

EUROMUSE: A web-based system for the management
of MUSEum objects and their interoperability with

EUROpeana

by

Giannis Skevakis, Varvara Kalokyri

A thesis submitted to the

 Department of Electronic & Computer Engineering

of the Technical University of Crete

in partial fulfillment of the

requirements for the Diploma of

Electronic Engineer and Computer Engineer

advisor: Prof. Stavros Christodoulakis

Chania, August 2011

Abstract

The continuing acceleration in the digitization of information is causing the traditional model

of museums to expand to include high-resolution images of their collections for perusal,

study, and exploration from any place with Internet connectivity. However, an impressive

abundance of high quality digital content that is available in museums remains largely

unexploited due to the lack of interconnection and interoperability among the management

systems of museums, the lack of centralized access through a European point of reference

like Europeana, as well as the inefficiency of current content organization and the metadata

used. In this thesis we present EuroMuse: a web-based management system for museums,

archives and digital collections, which facilitates the authoring and metadata enrichment of

cultural heritage objects. It is a multilingual tool, that establishes interoperability between

museums and Europeana, through its metadata-importing module, which enables the

seamless transportation of legacy metadata into the system, supporting a rich metadata

element set, which includes the Europeana Semantic Elements (ESE). Moreover, it supports

the semantic linkage of the cultural heritage objects with well-established controlled

vocabularies. It is developed with the Google Web Toolkit (GWT) framework, in the context

of Natural Europe project and is actively being used by the cultural museum experts of six

European Natural History Museums who have evaluated the system and have already

described over 1000 fully described cultural heritage objects.

Acknowledgements

 We would like to thank our supervisor, Prof. Stavros Christodoulakis, for his
encouragement and his continuous guidance and support throughout our research. We
would like also to thank him for the important experiences he offered us during our stay at
the Laboratory of Distributed Multimedia Information Systems and Applications (MUSIC).
 We would like to express our gratitude to the readers of this thesis Mr Antonios
Deligiannakis and Mrs Aikaterini Mania for the time they devoted and their critical
evaluation.
 Our appreciation goes to Nektarios Gioldasis and Fotis Kazasis for their supervision
and their valuable help regarding this thesis. We are also grateful to Konstantinos Makris for
being always ready to offer his help whenever needed.
 We would also thank the rest staff of the Laboratory for the pleasant environment
they provided.

Giannis Skevakis, Varvara Kalokyri

Technical University of Crete

 July 2011

Table Of Contents

Table Of Contents ... 7

List Of Tables .. 10

List Of Figures ... 12

Chapter 1: Introduction ... 15

Chapter 2: Background technologies ... 17

2.1. The Europeana Semantic Elements (ESE) .. 17

2.2. Asynchronous JavaScript and XML (AJAX) ... 21

2.3. Java Servlet ... 21

2.4. XML ... 23

2.4.1. XML Document, Elements and Attributes ... 23

2.4.2. Well-formed and valid documents .. 24

2.5. XML Schema .. 25

2.5.1. Schema components ... 25

2.5.2. Identity constraints.. 26

2.5.3. Namespaces... 28

2.6. XML Beans ... 28

2.7. Apache Lucene/Solr ... 29

2.8. Resource Description Framework (RDF) .. 30

2.8.1. Basic features of RDF ... 31

2.9. Simple Knowledge Organization System (SKOS) .. 32

2.10. Google Web Toolkit (GWT) ... 33

2.10.1. GWT Components ... 34

2.10.2. GWT Modes of Running .. 34

2.10.3. Remote Procedure Calls (RPCs) ... 35

2.10.4. Locales in GWT .. 37

2.10.5. UIBinder framework .. 39

Chapter 3: Functional Specification ... 41

3.1. Definitions ... 41

3.2. Stakeholders ... 42

3.3. Technical requirements .. 43

3.4. Use cases ... 44

Chapter 4: The ESE-CHO Application Profile ... 61

4.1. Data types ... 65

4.2. Mandatory elements for a CH Object ... 65

4.3. Recommended elements for a CH Object .. 79

4.4. Optional elements for a CH Object ... 86

4.5. Elements supplied by Europeana for a CH Object .. 97

4.6. Elements supplied for a collection of CH Objects ... 98

Chapter 5: System Architecture .. 105

5.1. Client Side ... 107

5.1.1. Model-View-Presenter (MVP) ... 107

5.1.2. Event Bus ... 111

5.1.3. Application Manager ... 112

5.1.4. Multilinguality support .. 112

5.1.5. RPC Async Interface ... 113

5.2. Server Side .. 113

5.2.1. Service Layer .. 113

5.2.2. Business Logic Layer .. 114

5.2.3. Data Layer .. 123

Chapter 6: GUI Design Specification ... 125

6.1. Application Structure ... 125

6.2. Usability heuristics ... 128

Chapter 7: Implementation .. 133

7.1. Architecture .. 133

7.1.1. Client Side .. 134

7.1.2. Server-Side ... 139

7.2. Graphic User Interface ... 150

7.2.1. Logging in ... 150

7.2.2. Start page .. 150

7.2.3. Editing user profile .. 152

7.2.4. Creating/Editing a new CHO Collection ... 152

7.2.5. Creating/editing a new CHO Metadata record ... 154

7.2.6. Import options ... 159

7.2.7. Export options ... 161

7.2.8. Administration ... 162

Chapter 8: Evaluation ... 165

Chapter 9: Related Work .. 167

9.1. Collective Access .. 167

9.2. Europeana.eu SIP Creator .. 168

Chapter 10: Conclusion .. 171

Works Cited ... 173

Appendix ... 177

The ESE-CHO AP Full Element Set .. 177

The ESE-CHO Application Profile .. 178

Example of Use for the ESE-CHO AP .. 207

List Of Tables

Table 1: Mandatory Elements of the ESE format .. 18

Table 2: Recommended Elements of the ESE format.. 19

Table 3: Europeana supplied elements of the ESE format .. 19

Table 4: Additional elements of the ESE format ... 21

Table 5: Internationalization Example in GWT. ... 38

Table 6: Summary of ESE/ESE-CHO elements ... 64

Table 7: Summary of ESE-CHO Collection elements ... 64

Table 8: ESE-CHO Title element overview. .. 66

Table 9: ESE-CHO Description element overview. .. 67

Table 10: ESE-CHO Language element overview. .. 67

Table 11: ESE-CHO Subject element overview. ... 68

Table 12: ESE-CHO Status element overview. ... 69

Table 13: ESE-CHO Object URL element overview. ... 70

Table 14: ESE-CHO Context URL element overview. ... 71

Table 15: ESE-CHO Thumbnail URL element overview. .. 72

Table 16: ESE-CHO Content Type element overview. ... 73

Table 17: ESE-CHO Date element overview. ... 73

Table 18: ESE-CHO Date Created element overview. .. 74

Table 19: ESE-CHO Date Issued element overview. .. 75

Table 20: ESE-CHO Spatial Coverage element overview. .. 76

Table 21: ESE-CHO Data Provider element overview. ... 76

Table 22: ESE-CHO Country element overview. .. 77

Table 23: ESE-CHO Provider element overview. ... 77

Table 24: ESE-CHO Licence element overview. ... 79

Table 25: ESE-CHO Accessibility element overview. ... 79

Table 26: ESE-CHO Classification element overview. ... 80

Table 27: ESE-CHO Alternative Title element overview. ... 81

Table 28: ESE-CHO Creator element overview. ... 82

Table 29: ESE-CHO Contributor element overview. .. 82

Table 30: ESE-CHO Publisher element overview. .. 83

Table 31: ESE-CHO Type element overview. ... 84

Table 32: ESE-CHO Coverage element overview. .. 84

Table 33: ESE-CHO Temporal Coverage element overview. ... 85

Table 34: ESE-CHO Is Part Of element overview. .. 86

Table 35: ESE-CHO Source element overview. .. 86

Table 36: ESE-CHO Provenance element overview. .. 87

Table 37: ESE-CHO Format element overview. ... 87

Table 38: ESE-CHO Extent element overview. ... 88

Table 39: ESE-CHO Medium element overview. ... 88

Table 40: ESE-CHO Identifier element overview. .. 89

Table 41: ESE-CHO Rights element overview. ... 90

Table 42: ESE-CHO Table Of Contents element overview. .. 90

Table 43: ESE-CHO Relation element overview. .. 91

Table 44: ESE-CHO Conforms To element overview. .. 91

Table 45: ESE-CHO Has Format element overview. .. 92

Table 46: ESE-CHO Is Format Of element overview. ... 92

Table 47: ESE-CHO Has Version element overview. .. 93

Table 48: ESE-CHO Is Version Of element overview. .. 93

Table 49: ESE-CHO Has Part element overview. ... 94

Table 50: ESE-CHO Is Referenced By element overview. .. 94

Table 51: ESE-CHO References element overview. ... 95

Table 52: ESE-CHO Is Replaced By element overview. .. 95

Table 53: ESE-CHO Replaces element overview. ... 96

Table 54: ESE-CHO Is Required By element overview. .. 96

Table 55: ESE-CHO Requires element overview. ... 97

Table 56: ESE-CHO Collection Title element overview. ... 98

Table 57: ESE-CHO Collection Creator element overview. .. 99

Table 58: ESE-CHO Collection Subject element overview. .. 100

Table 59: ESE-CHO Collection Description element overview. ... 100

Table 60: ESE-CHO Collection Contributor element overview. ... 101

Table 61: ESE-CHO Collection Type element overview. .. 102

Table 62: ESE-CHO Collection Identifier element overview. ... 102

Table 63: ESE-CHO Collection Coverage element overview. ... 103

List Of Figures

Figure 1: XML document example ... 24

Figure 2 : XML Schema Element with ID/IDRef/IDRefs ... 27

Figure 3 : XML document with ID/IDRef/IDRefs .. 27

Figure 4 : XML Schema element with Unique identity constraint .. 28

Figure 5 : The RDF graph of a RDF triple ... 31

Figure 6: SKOS example ... 33

Figure 7: Components of GWT RPC Mechanism ... 36

Figure 8: Use Case Diagram of the application. .. 45

Figure 9 : Overall system architecture, containing client-side (top) and server-side (bottom)

along with the included modules. ... 106

Figure 10: Model-View-Presenter (MVP) Design Pattern. .. 108

Figure 11: Model-View-Controller (MVC) Design Pattern. .. 108

Figure 12: The hierarchy of biological classification's eight major taxonomic ranks 116

Figure 13: SKOS example ... 117

Figure 14: The lost update problem .. 119

Figure 15: Concurrency Control Activity Diagram ... 123

Figure 16 : Main GUI Specification .. 126

Figure 17 : GUI Specification of CHO Collection Metadata ... 127

Figure 18 : GUI Specification of CHO Metadata .. 128

Figure 19: Login window ... 150

Figure 20: Homepage of the EuroMuse .. 151

Figure 21: Collection Browser ... 151

Figure 22: The User’s Profile View... 152

Figure 23: Creating a CHO Collection (left) and providing a name (right)............................. 152

Figure 24: Metadata information of a CHO Collection in View Mode 153

Figure 25: Metadata information of a CHO Collection in Edit Mode 153

Figure 26: Additional information about the Description metadata field 154

Figure 27: CHO Collection Control bar in Edit Mode ... 154

Figure 28: CHO Metadata record in edit mode ... 155

Figure 29: CHO metadata record control bar in Edit Mode .. 155

Figure 30: Options for adding an online object (left) and uploading an object (right) 156

Figure 31: Metadata categories in the CHO Metadata Menu ... 156

Figure 32: Adding a Greek translation of the English title of the object 156

Figure 33: Basic Information of a fully described CHO .. 157

Figure 34: Technical information of a fully described CHO ... 157

Figure 35: Historical Information of a described CHO ... 158

Figure 36: Related Location Information of a described CHO ... 158

Figure 37: Related Resources Information of a described CHO .. 159

Figure 38: Import options .. 159

Figure 39: Import metadata options ... 160

Figure 40: Import ESE metadata options... 160

Figure 41: Import media object options .. 161

Figure 42: Export options .. 161

Figure 43: Menu bar of the tool when logged in as an administrator 162

Figure 44: Administration page ... 162

Figure 45: Editing email field of the user “nhmc1” ... 163

Figure 46: Creating a new user account .. 163

Chapter 1

Introduction

The continuing acceleration in the digitization of information, combined with the increasing

capacity of digital information storage, is causing the expansion of the traditional model of

museums (i.e. as static “collections of collections” of three-dimensional specimens and

artifacts) to include virtual exhibits and high-resolution images of their collections for

perusal, study, and exploration from any place with Internet connectivity. However, an

impressive abundance of high quality digital content that is available in museums remains

largely unexploited due to a number of barriers such as: the lack of interconnection and

interoperability between the management systems of museums, the lack of centralized

access through a European point of reference like Europeana, as well as the inefficiency of

current content organization and the metadata used.

In the wide public, Europeana [1] is primarily perceived as a portal exposing increasingly

impressive amounts of cultural heritage from various sources to Europe's citizens. However,

Europeana is not a Web Portal, but a services platform, providing an Application Program

Interface (API) enabling cultural institutions and users to access/provide content to

Europeana and build applications using Europeana functionalities for their own use.

The main purpose of Europeana is to enable people to explore the digital resources of

Europe's museums, libraries, archives and audio-visual collections. It promotes discovery

and networking opportunities in a multilingual space where users can engage, share in and

be inspired by the rich diversity of Europe's cultural and scientific heritage.

Ideas and inspiration can be found within the more than 15 million items on Europeana.

These objects include:

 Images - paintings, drawings, maps, photos and pictures of museum objects
 Texts - books, newspapers, letters, diaries and archival papers
 Sounds - music and spoken word from cylinders, tapes, discs and radio broadcasts
 Videos - films, newsreels and TV broadcasts

16 Chapter 2

On a very abstract level, Europeana can be seen as a large collection of surrogate objects

representing born digital or digitized cultural heritage objects which themselves remain

outside the Europeana data space.

The system presented in this thesis is the first step towards allowing the connection of

digital collections with Europeana. It is a web-based management system for museums,

archives and digital collections, which facilitates the authoring and metadata enrichment of

cultural heritage objects.

EuroMuse is a multilingual tool, which establishes the interoperability between museums

and Europeana and the seamless ingestion of legacy metadata, through its metadata-

importing module. It supports a rich metadata element set, which is a superset of the

Europeana Semantic Elements (ESE) metadata format as well as a variety of the most

popular media formats. The main features of EuroMuse include the publication of

multimedia objects as well as the semantic linkage of the objects with well-established

controlled vocabularies and the real-time collaboration among end-users with concurrency

control mechanisms. The client side developed with Google Web Toolkit (GWT), the state of

the art framework for writing complex RIA applications.

Finally, EuroMuse is developed in the context of the Natural Europe project and is actively

being used by the cultural museum experts of six European Natural History Museums who

have evaluated the system and have already described over 1000 fully described cultural

heritage objects (CHOs) organized in CHO collections. Until the end of this project, 16.000

CHOs will be described through our application.

The six museums that are already using our application are:

 University of Crete - Natural History Museum of Crete – GREECE

 National Museum of Natural History – University of Lisbon – PORTUGAL

 Jura-Museum Eichstaett – GERMANY

 Arctic-Center – FINLAND

 The Estonian Museum of Natural History – ESTONIA

 Hungarian Natural History Museum – HUNGARY

Background technologies 17

Chapter 2

Background technologies

In this chapter we present the standards used in this thesis, as well as the technologies used

for the implementation of our application. Firstly, in Section 2.1 we present the Europeana

Semantic Elements, which is the main metadata vocabulary used by Europeana to describe

museum objects. Section 2.2 describes AJAX, the leading technology in Web 2.0. Sections

2.3, 2.4, 2.5 and 2.6 talk about Java Servlet technology, XML,XML Schema and XML Beans

respectively, which are the main technologies used for the development of EuroMuse.

Section 2.7 describes Apache Lucene and Solr used by EuroMuse for indexing and fast

retrieval of vocabulary terms, followed by RDF (Section 2.8) and SKOS (Section 2.9), the

formats that the vocabularies are expressed. Lastly, in Section 2.10 we present Google Web

Toolkit, which was used to implement the client side of the system.

2.1. The Europeana Semantic Elements (ESE)

Europeana’s main goal is to provide integrated access to digital objects from the cultural

heritage organizations of all the nations of the European Union and make them discoverable

together in a common on-line environment. To achieve that, it needs to harvest and index

the descriptive metadata associated with the digital objects. As there is no universal

metadata standard applied across the participating domains, a set of metadata elements has

been developed that will allow a common set of information to be supplied to support the

functionality desired by the user and needed for the operation of the underlying system.

The Europeana Semantic Elements (ESE) [2] (latest version 3.4, March 2011) is an updated

version of the metadata set that has been used from the start in the Europeana prototype in

November 2008. This version has been updated to take account of the Data Quality

Improvement Plan which makes more elements mandatory and changes the usage of some

elements. It is an application profile based on Dublin Core [3], providing a generic set of

18 Chapter 2

terms that can be applied to heterogeneous materials thereby providing a baseline to allow

contributors to take advantage of their existing rich descriptions.

To provide ESE-compliant metadata, it is necessary for contributors to map elements from

their own metadata format to ESE. In addition to the mapping, it is necessary for a

normalisation process to be carried out on some values to enable machine readability. To

this end, an XML Schema [4] has also been produced (building on Dublin Core and Dublin

Core Terms schemas) as a further tool to assist providers in ensuring compliance with ESE.

The ESE specification defines an extensive list of elements. However, it classifies them

according to their importance in achieving a common basis for answering “who, what,

where and when” questions.

Below, are listed all the elements of the Europeana Semantics Elements (version 3.4.) with a

brief description of each element.

Mandatory Elements

dc:title The title or name by which the digital object is
known.

dc:description A prose description of the digital object.

dc:language This element is used to state the language of
the digital object and is repeated if the object
has more than one language.

europeana:dataProvider The names of the organisations who supply the
data to an aggregator to be unambiguously
recorded.

europeana:isShownAt This element contains a URL where the object is
displayed within an information context or is
accessed indirectly via another link.

europeana:isShownBy This element should contain the URL that gives
a direct link to the digital object.

europeana:provider This element contains the name of the
organisation that delivers data directly to
Europeana.

dc:subject The subject of the digital object which can
include topics, people and places.

dc:type The nature or genre of the digital object.

dc:coverage Coverage can be used for either spatial or
temporal aspects of the object being described.

dcterms: spatial Information about the spatial characteristics of
the digital object.

europeana:rights The value in this element is a URL constructed
by adding a code, indicating the copyright status
of an object to the domain name where that
status is defined.

europeana:type This element is used to classify digital objects as
one of the four Europeana material types: TEXT,
IMAGE, SOUND or VIDEO.

Table 1: Mandatory Elements of the ESE format

Background technologies 19

Recommended Elements

dcterms:alternative This can be any alternative title or name by
which the digital object is known.

dc:creator The name of the creator or creators of the
original physical object or the born digital
object.

dc:contributor The name of contributors to the either the
original physical object or the born digital
object.

dc:date This date element should be used to contain the
most significant date in the life of the digital
object.

dcterms:created This is the date of the creation of the digital
object.

dcterms:issued The date when the digital object was formally
issued or published.

dcterms:temporal Information of the temporal characteristics of
the digital object.

dc:publisher The name of the publisher of the digital object.

dc:source This element should be used to indicate a
related resource from which the digital object is
derived.

dcterms:isPartOf This element should be used to identify a
related resource in which the described
resource is physically or logically included.

europeana:object This element supports the process of creating
thumbnails for the Europeana portal.

Table 2: Recommended Elements of the ESE format

Elements supplied by Europeana

europeana:country This is the name of the country in which the
organisation named in europeana:provider is
based.

europeana:language This is the official language of the country in
which the organisation named in
europeana:provider is located.

europeana:uri The value in this element is a unique identifier
for each object record in the Europeana system.

europeana:usertag This element is provided to support future
functionality in Europeana. These are tags
created by registered users.

europeana:year The value in this element is a four digit year
(YYYY) from the Gregorian calendar used to
support the Timeline and the Date facet in the
portal.

Table 3: Europeana supplied elements of the ESE format

20 Chapter 2

Additional Elements

dc:format This element can include the file format,
physical medium and dimensions of the original
physical object or the digital object.

dcterms:extent Used to record the size or duration of the
original physical or digital object.

dcterms:medium The material or physical carrier of the resource.

dc:identifier This element can be used for an identifier of the
digital object.

dc:rights Information about intellectual property rights,
access rights or license arrangements for the
digital object.

dcterms:provenance This element is to record a statement of any
changes in ownership and custody of the
resource since its creation that are significant
for its authenticity, integrity and interpretation.

dc:relation This element should be used for information
about resources that are related to the digital
object.

dcterms:conformsTo This element is used to identify standards to
which the described resource conforms.

dcterms:hasFormat This element used to identify another resource
that is substantially the same as the digital
object being described by the metadata but
exists in a different format.

dcterms:isFormatOf This element is used to identify a related
resource that is substantially the same as the
digital object but in a different format.

dcterms: hasVersion This element is used to identify a related
resource that is a version, edition or adaptation
of the digital object described in the metadata.

dcterms:isVersionOf This element is used to identify a related
resource of which the described resource is a
version, edition, or adaptation.

dcterms:hasPart This element is used to identify a related
resource that is included either physically or
logically in the digital object.

dcterms:isReferencedBy This element is used to identify a related
resource that references, cites, or otherwise
points to the digital object.

dcterms:references This element is used to identify related
resources that are referenced, cited, or
otherwise pointed to by the digital object.

dcterms:isReplacedBy This element is used to identify a related
resource that supplants, displaces, or
supersedes the digital object.

dcterms:replaces This element is used to identify a related
resource that is supplanted, displaced, or
superseded by the digital object.

dcterms:isRequiredBy This element is used to identify a related
resource that requires the digital object to
support its function, delivery or coherence.

dcterms:requires This element is used to identify a related
resource that is required by the digital object to
support its function, delivery or coherence.

Background technologies 21

dcterms:tableOfContents Used for a list of the sub-
units of the digital object.

europeana:unstored This element has been created in order to allow
providers to retain all important information
that cannot otherswise be mapped to ESE.

Table 4: Additional elements of the ESE format

2.2. Asynchronous JavaScript and XML (AJAX)

In 1990's user interaction in web applications was request-wait-response based, which

slowed down the user interaction considerably. The most web sites were based on complete

HTML pages where each user action required that the page should be re-loaded from the

server. Each time a page was reloaded due to a partial change, all of the content was re-sent

instead of only the changed information. This placed additional load on the server and use of

excessive bandwidth. Asynchronous JavaScript and XML (AJAX) [5] came as a boon to the

web application development, providing mechanisms for user experience similar to desktop

applications.

In the classic web application model, addressed as pre AJAX web model, user interaction

triggers an HTTP [6] request to the web server. The server performs necessary processing for

example, retrieving data or doing some calculations etc. When the processing is completed

the server returns an HTML [7] page to the client. The problem is that, during the server

processing time, the user can do nothing but wait for a page to be loaded or refreshed from

the server.

AJAX increases the web page's interactivity, speed, and usability in order to provide richer

user experience. AJAX places an AJAX engine between the client and server. This engine is

written in JavaScript and behaves like a hidden frame. The AJAX engine renders the user

interface and handles the communication between client and server. The client-server

communication with AJAX is asynchronous. Asynchronous communication means the client

does not need to wait for the server response. After sending the request to the server the

execution in the client program does not halt, rather the execution is continued. The

response is sent to the client when it is available. The AJAX engine sends requests to the

server on behalf of the client and receives data or responses from the server. In a web

model with AJAX, the server sends small data instead of the HTML page. The AJAX engine

shows the received data or response by updating the page partially. Thus user is free to do

other interactions after sending a request to the server.

2.3. Java Servlet

A Servlet is a Java programming language class used to extend the capabilities of servers

that host applications accessed via a request-response programming model. The Servlet

class is included in JAVA EE (Enterprise Edition) and conforms to the Java Servlet API, a

protocol by which a Java class may respond to requests. Although servlets can respond to

http://en.wikipedia.org/wiki/Bandwidth_(computing)

22 Chapter 2

any type of request, they are commonly used to extend the applications hosted by Web

servers. Thus, it can be thought of as a Java Applet that runs on a server instead of a

browser.

Most Java servlets are designed to respond to HTTP requests in the context of a Web

application. As such, the HTTP-specific classes in the javax.servlet and javax.servlet.http

packages are the ones you'll care about.

Each Java servlet is a subclass of HttpServlet. This class has methods that provide access to

the request and response wrappers used to handle requests and create responses.

The HTTP protocol isn't Java-specific, of course. It is simply a specification that defines what

service requests and responses have to look like. The Java servlet classes wrap those low-

level constructs in Java classes, with convenience methods that make them easier to be used

within a Java language context. When a user issues a request via a URL, the Java servlet

classes convert it to an HttpServletRequest and send it to the target pointed to by the URL,

as defined in configuration files for the particular servlet container the user is using. When

the server side has done its work, the Java Runtime Environment packages the results in an

HttpServletResponse and then sends a raw HTTP response back to the client that made the

request. When a user is interacting with a Web app, he usually makes multiple requests and

gets multiple responses. All of them are within the context of a session, which the Java

language wraps in an HttpSession object.

A container, like Tomcat [8], manages the runtime environment for servlets. The container

can be configured to customize the way in which the J2EE server functions. Various

configurations allow the creation of a bridge from a URL (entered by a user in a browser) to

the server-side components that handle the requests. When a web application starts, the

container loads and initializes your servlet(s), and manages their lifecycle.

By the concept “servlet lifecycle”, we simply mean that things happen in a predictable way

when a servlet is invoked. In other words, certain methods on any servlet will always get

called in the same order. Here's a typical scenario:

 A user enters a URL in his browser. The Web server configuration file says that this

URL points to a servlet managed by a servlet container running on the server.

 If an instance of the servlet hasn't been created yet (there's only one instance of a

servlet for an application), the container loads the class and instantiates it.

 The container calls init() on the servlet.

 The container calls service() on the servlet, and passes in a wrapped

HttpServletRequest and HttpServletResponse.

 The servlet typically accesses elements in the request, delegates to other server-

side classes to perform the requested service and to access resources like

databases, then populates the response using that information

 If necessary, when the servlet's useful life is done, the container calls destroy() on

the servlet to finalize it.

Background technologies 23

2.4. XML

It is common for XML (Extensible Markup Language) [9] to be used in interchanging data

over the Internet. XML is a markup language for documents containing structured

information and was designed for data encoding and delivery. A markup language is a

mechanism to specify structures in a document. The XML specification defines a standard

way to add markup to documents.

XML is a flexible markup language that programmers can modify to cover their needs. That

is, the programmer decides the XML tags that describe data rather than having to adhere to

a standard set of tags as he does with HTML. It is worthwhile to mention that XML describes

the data itself in contrast to HTML that describes how data should look on the screen. This

flexibility allows the companies to create their own standard tags to describe data that is

particular to their business.

XML is the most preferred way to transfer data between web applications, web services and

systems based on web interaction for a couple of reasons. XML represents data, as a

consequence, the data can be easily shared among different kinds of applications that run

on different operating systems as it is independent from operating systems, transfer

protocols and organizations and it is compatible with the majority of telecommunication

protocols. Moreover, XML can be compressed in high levels in order to achieve faster

transmission via networks.

2.4.1. XML Document, Elements and Attributes

An XML document contains nested elements; this way the relations between the tags of the

XML document are implied. This hierarchy creates a tree of element nodes that depicts the

data.

Every single element is enclosed in the angled brackets structural delimiters (< >), and

always have an open (<) and closed markup tag (</). Child elements are placed within the

open and closed markup tags of a parent element, and information is placed within the open

and closed markup tags of a child element. The content type of an element may be plain

text, a set of elements or combination of text and elements. An XML document must have

one and only one root element, which includes the remaining elements of the data

representation. Improperly nesting elements and orphan closing tags form an invalid xml

document. A comment is information in the XML document that’s typically not part of the

actual data and is enclosed in the (<!--) and (- ->) constructs.

Element tags may include attributes. An attribute is information that modifies an XML

markup tag. Attributes are placed within the opening markup tag. One may create as many

attributes as required; however, each attribute must have a unique name and a value

contained within quotations (attributeName=“value”). Each name/value pair must be

separated by a space. XML allows the flexibility to create custom attributes.

24 Chapter 2

Element names and attribute names cannot contain whitespace characters; on the contrary,

their values can contain whitespace.

Figure 1: XML document example

An example of an XML document is shown in Figure 1. This is a part of an XML document

that carries information about a cellar. The hierarchy of “Cellar” and “wine” elements

implies their “parent-child” relation. The “wine” element describes a bottle of wine in an

individual’s cellar and contains four elements: <title>, <producer>, <vintage>, <purchase-

date> and one comment: <!-- Vintage is the year the grapes were harvested. -->. All

elements have some text which is the information that is carried by the “wine” element.

Furthermore, the <producer> element, except from its value, “SantoWines”, contains an

attribute named “country” that describes the origin of the wine producer.

2.4.2. Well-formed and valid documents

A well-formed XML document has correct XML syntax, which means that it follows the basic

structural rules of XML:

 It contains one or more elements.

 There is exactly one element, the root or document element, no part of which

appears in the content of any other element.

 The elements, delimited by start- and end-tags, nest properly within each other.

 The attribute values must be quoted.

Well-formed documents are well-formed because they do not have to be created in a

structured environment, against a pre-defined set of structural rules, but merely have to

comply with XML well-formedness constraints as presented above.

A valid XML document is a well-formed XML document, which also conforms to the rules of

a Document Type Definition (DTD) or an XML Schema (XSD).

Background technologies 25

2.5. XML Schema

XML (Extensible Markup Language), described in Section 2.4, allows the developers to create

their own formats for storing and sharing information. XML Schema [10] is the formal

declaration and documentation of those formats, providing a foundation on which software

developers can build software. XML Schema is the language for defining classes in XML

documents. A set of attributes and content structure elements are defined for each class

and its instances. An XML Schema language is a formalization of the constraints, expressed

as rules or a model of structure, that apply to a class of XML documents. In many ways,

schemas serve as design tools, establishing a framework on which implementations can be

built.

The XML schema is expressed in XML 1.0 syntax and is intended to describe the structure

and express the content constraints of documents written in XML. Thus, an XML Schema

defines the structure of XML instance documents. The XML Schema comprises a set of

components, which are categorized in three main groups: primary, secondary and helper

components.

Like all XML schema languages, XSD can be used to express a set of rules to which an XML

document must conform in order to be considered 'valid' according to that schema.

However, unlike most other schema languages, XSD was also designed with the intent that

determination of a document's validity would produce a collection of information adhering

to specific data types.

2.5.1. Schema components

The primary components include Simple Type definitions, Complex Type definitions,

Element definitions and Attribute definitions. Simple Types and Complex Types define the

xml schema author-defined types that can be used across an xml schema by referring to

them through the “type” attribute of elements. Complex Types may be defined as concrete

or abstract, respectively allowing the derivation or not of instances, through the Boolean

value of the optional attribute “abstract”. Simple Types are defined as restrictions, unions or

lists of built-in types (like string, integer, double, Boolean etc.) or author-defined types of an

xml schema. All kinds of types may or may not have a name, according to their location in

the schema. Unnamed types are nested in other xml structures (elements, simple types etc.)

and their scope is restricted within those structures. On the other hand, the element and

attribute definitions must have a name.

Moreover, XML Schema supports mechanisms of inheritance both for types and elements,

through the extension and restriction for the former and through the “substitutionGroup”

for the latter. The types may include in their definition the “final” attribute with acceptable

values “extension” and “restriction”, which prevents further derivations of a type by

extension and restriction respectively. The SubstitutionGroup attribute supports the

substitution of one and only named element from another. Any top-level element

declaration can serve as the defining member, or head, for an element substitution group.

26 Chapter 2

Other top-level element declarations, regardless of the target namespace, can be designated

as members of the substitution group headed by this element. Note that the members must

have type definitions which are either the same as the head's type definition or restrictions

or extensions of it.

The secondary components include attribute group definitions, identity constraint

definitions, model group definitions and notation declarations. The attributes capture

information about complex types and form attribute groups when there is need to use

simultaneously all of them. Attribute groups must be declared in top-level, in contrary to

individually declared attributes that may appear at top-level or nested in complex types. The

same fact is applied to model groups, too. Model groups are collections of elements with a

specific behavior among them. A model group specifies a sequential (sequence), disjunctive

(choice) or conjunctive (all) interpretation of the group members. The elements taking part

in sequences, choices and all structures, may carry the “minOccurs” or/and the “maxOccurs”

attribute in their declaration. These attributes specify, respectively, the minimum and the

maximum number of occurrences of each element in the model group. The default value, in

case of absence, is 1, implying exactly one occurrence.

The helper components include annotations, model groups, particles (i.e. min occurs and

max occurs), wildcards and attribute uses. These components essentially are small parts of

other components, since they are not independent of their context.

2.5.2. Identity constraints

The identity constraint mechanism of XML Schema is a very powerful tool for schema

authors. It basically provides two ways to identify and reference elements and attributes

inside an XML document. These are the ID/IDREF/IDREFS and key/keyref. The former

combination is inherited from XML’s DTDs while the latter is introduced by the XML Schema

in order to offer more flexibility by using XPath. The usage semantics of the identity

constraints are close to those of foreign keys in relational databases.

The first approach to describe identifiers and references with W3C XML Schema, ID/IDREF,

can be used to define either attributes or elements by binding their type to the xs:ID,

xs:IDREF or xs:IDREFS built-in datatypes. IDREFS is a whitespace-seperated list of IDREF

values. IDs are global to a document, meaning that we are not allowed to use the same ID

value for different constructs within the same document and indicates that the attribute

value uniquely identifies the containing element. In Figure 2 and Figure 3 are presented an

XML Schema that uses ID/IDREF/IDREFS and a sample XML document based on it,

respectively.

Background technologies 27

Figure 2 : XML Schema Element with ID/IDRef/IDRefs

This is a possible xml schema that describes a wine bottle in a cellar. Notice that the

attributes values of the ID and IDREF types cannot start with a number. Also, notice that

element “producer” cannot have any children, since the IDREF content type is empty.

Moreover, the element “vintage” is a whitespace-separated list of years. Finally, the years

start with the “Y” letter, because an IDREF value cannot start with a number. Under these

limitations, a sample XML document based on the schema presented in Figure 2 is shown in

Figure 3.

Figure 3 : XML document with ID/IDRef/IDRefs

The identity constraints of the key/keyref type contain: (a) A selector element, which

specifies the XML Schema elements on which the identity constraint is applied; and (b) A

field element, where the XML Schema constructs (elements or attributes) that form the

constraint value are specified. Both the selector and field elements specify the construct(s)

they refer to in their xpath attribute. The value of that attribute is a restricted XPath (XPath

1.0 [W3C/XSD1]) expression reffering to instances of the element being declared. The

enhancements of the ID/IDREF mechanism are the following: a)Functioning as a part of an

identity-constraint is in addition to, not instead of, having a type; b)Not only attribute

values, but also element content and combinations of values and content can be declared to

be unique; c)Identity-constraints are specified to hold within the scope of particular

elements; d)(Combinations of) attribute values and/or element content can be declared to

be keys, that is, they are not only unique, but always present and non-nillable; and e) The

comparison between keyref {fields} and key or unique {fields} is by value equality, not by

string equality.

28 Chapter 2

Figure 4 : XML Schema element with Unique identity constraint

2.5.3. Namespaces

The Namespaces provide a URI-based mechanism that allows differentiating XML

vocabularies. XML Schema associates a namespace to all the objects (elements and

attributes, but also simple and complex types as well as groups of elements and attributes)

defined in a schema, allowing the use of namespaces to build modular libraries of schemas.

A Namespace is a URI represented by a prefix. The default XML Schema namespace, which

includes built in types is "http://www.w3.org/2001/XMLSchema" and is often represented

by the "xs" prefix. Namespace prefixes should only be considered to be local shortcuts to

replace the URI references that are the real identifiers for a namespace.

2.6. XML Beans

XMLBeans [11] is a tool that allows access to the full power of XML in a Java friendly way.

The idea is that you can take advantage of the richness and features of XML and XML

Schema and have these features mapped as naturally as possible to the equivalent Java

language and typing constructs. XMLBeans uses XML Schema to compile Java interfaces and

classes that can be used to access and modify XML instance data. While a major use of

XMLBeans is to access an XML instance data with strongly typed Java classes there are also

API's that allow access to the full XML Infoset (XMLBeans keeps XML Infoset fidelity) as well

as to allow reflection into the XML schema itself through an XML Schema Object model.

There are at least two major things that make XMLBeans unique from other XML-Java

binding options.

Background technologies 29

1. Full XML Schema support. XMLBeans fully supports XML Schema and the

corresponding java classes provide constructs for all of the major functionality of

XML Schema. This is critical since many times there isn’t control over the features of

XML Schema that are needed to be exploited in Java. Also, XML Schema oriented

applications can take full advantage of the power of XML Schema and they do not

have to restrict themselves to a subset.

2. Full XML Infoset fidelity. When unmarshalling an XML instance (converting XML

instance into java object) the full XML infoset is kept and is available to the

developer. This is critical because of the subset of XML that is not easily represented

in java. For example, the order of the elements or comments might be needed in a

particular application.

A major objective of XMLBeans has been to be applicable in all non-streaming (in memory)

XML programming situations. You should be able to compile your XML Schema into a set of

java classes and know that: a) you will be able to use XMLBeans for all of the schemas you

encounter (even the warped ones) and b) that you will be able to get to the XML at

whatever level is necessary - and not have to resort to multiple tools to do this.

To accomplish this XMLBeans provides three major APIs:

 XmlObject: The java classes that are generated from an XML Schema are all derived

from XmlObject. These provide strongly typed getters and setters for each of the

elements within the defined XML. Complex types are in turn XmlObjects. For

example getCustomer might return a CustomerType (which is an XmlObject). Simple

types turn into simple getters and setters with the correct java type. For example

getName might return a String.

 XmlCursor: From any XmlObject you can get an XmlCursor. This provides efficient,

low level access to the XML Infoset. A cursor represents a position in the XML

instance. You can move the cursor around the XML instance at any level of

granularity you need from individual characters to Tokens.

 SchemaType: XMLBeans provides a full XML Schema object model that you can use to

reflect on the underlying schema meta information. For example, you might want to

generate a sample XML instance for an XML schema or perhaps find the

enumerations for an element so that you can display them.

2.7. Apache Lucene/Solr

Apache Lucene [12] is a free/open source information retrieval software library, originally

created by Doug Cutting. It is a high-performance, full-featured text search engine library

written entirely in Java. It is a technology suitable for nearly any application that requires

full-text search, especially cross-platform.

30 Chapter 2

While suitable for any application which requires full text indexing and searching capability,

Lucene has been widely recognized for its utility in the implementation of Internet search

engines and local, single-site searching.

At the core of Lucene's logical architecture is the idea of a document containing fields of

text. This flexibility allows Lucene's API to be independent of the file format. Text from PDFs,

HTML, Microsoft Word, and OpenDocument documents, as well as many others, can all be

indexed as long as their textual information can be extracted.

Solr [13] is the popular, blazing fast open source enterprise search platform from the Apache

Lucene project. Its major features include powerful full-text search, hit highlighting, faceted

search, dynamic clustering, database integration, rich document (e.g., Word, PDF) handling,

and geospatial search. Solr is highly scalable, providing distributed search and index

replication, and it powers the search and navigation features of many of the world's largest

internet sites.

Solr is written in Java and runs as a standalone full-text search server within a servlet

container such as Tomcat [8]. Solr uses the Lucene Java search library at its core for full-text

indexing and search, and has REST-like HTTP/XML and JSON APIs that make it easy to use

from virtually any programming language. Solr's powerful external configuration allows it to

be tailored to almost any type of application without Java coding, and it provides extensive

plugin architecture when more advanced customization is required.

2.8. Resource Description Framework (RDF)

RDF (Resource Description Framework) [14] is actually one of the older specifications, with

the first working draft produced in 1997. In the earliest version, authors established a

mechanism for working with metadata that promotes the interchange of data between

automated processes. This mechanism became the base on which RDF was developed.

Regardless of the transformations RDF has undergone and its continuing maturing process,

this statement forms its immutable purpose and focal point.

The Resource Description Framework (RDF) is a language designed to support the Semantic

Web, in much the same way that HTML is the language that helped initiate the original Web.

RDF is a framework for supporting resource description, or metadata (data about data), for

the Web. RDF provides common structures that can be used for interoperable XML data

exchange.

One of the differences between XML and RDF is about the tree-structured nature of XML, as

compared to the much flatter triple-based pattern of RDF. XML is hierarchical, which means

that all related elements must be nested within the elements they are related to. RDF does

not require this nested structure. On the other hand, XML does not provide any information

about the data described. That is, the nesting structure of the nodes does not imply in any

way the relations among the data described, but only which element is the parent of the

http://en.wikipedia.org/wiki/OpenDocument

Background technologies 31

other element. In contrast to this fact, an RDF triple pattern gives the information how a

datum is related to the rest of the data of the domain.

2.8.1. Basic features of RDF

RDF conceptualizes anything (and everything) in the universe as a resource. A resource is

simply anything that can be identified by a Universal Resource Identifier (URI). URI provides

a unique identifier for the information. Anything whether we can retrieve it electronically or

not, can be uniquely identified in a similar way.

An RDF triple is formed by three components (predicate, subject, and object). These

components create a statement, subject – predicate – object, in which the predicate

specifies the relation between the subject and the object. The subject and the object may be

any resources or literals (literals are atomic values, strings). Moreover, predicates are also

known as properties. RDF properties may be thought of as attributes of resources and in this

sense they correspond to traditional attribute-value pairs. RDF properties represent

relations between resources. Let P be a predicate and x, y the subject and the object

respectively (x, P, y).The property P can be regarded as a logical function: P(x,y) of two

inputs, which describes the relation between x and y.

Furthermore, RDF triples can be described by an RDF graph, a directed labeled graph that

contains nodes and arcs. The RDF triple is comprised of a resource node (the subject) which

is linked to another resource node (the object) through an arc labeled with a third resource

(the predicate). In Figure 5 is shown an RDF graph that contains one triple.

Figure 5 : The RDF graph of a RDF triple

Unfortunately, recording the RDF data in a graph is not the most efficient means of storing

or retrieving this data. Instead, encoding RDF data, a process known as serialization, is

usually preferred, resulting in RDF/XML which is based on XML structures. An RDF/XML

document starts with the root element rdf:RDF. The children of this element include the

data descriptions (rdf:Description). A description element expresses a statement about one

resource. The reference to that resource can be established by a) Using the rdf:id, in case

the resource is new; b) Using the rdf:about, in case to refer to an existing resource; or c)

Without using any name in order to be anonymous. Anonymous resources belong to a

special category of nodes, the blank nodes, defined in Definition 2.1.

Blank nodes are nodes that don't have a URI. When identifying a resource is meaningful, or

the resource is identified within the specific graph, a URI is given for that resource. However,

32 Chapter 2

when the identification of the resource does not have sense or does not exist within the

specific graph at the time the graph was recorded, the resource is treated as a blank node. In

either case, not having a URI for the item does not mean we cannot talk about it and refer to

it. Blank nodes are graph nodes that represent a subject (or object) for which we would like

to make assertions, but have no way to address with a proper URI.

The following RDF graph describes that “John has a friend born the 26th of January”. This

expression can be written with two triples linked by a blank node representing the

anonymous friend of John.

The first triple specifies that "John knows p1". The second triple specifies that "p1 is born on

January 26th". Moreover, “ex:John” is a named resource, which means this resource is

absolutely identified by the URI obtained by replacing the “ex:” prefix by the XML

namespace it stands for, such as http://music.tuc.gr/Person#John. The “_:p1” blank node

represents John's anonymous friend, not identified by a URI. One can know by the semantics

declared in the FOAF vocabulary *FOAF+ that the class of “_:p1” is “foaf:Person”.

2.9. Simple Knowledge Organization System (SKOS)

Simple Knowledge Organization System (SKOS) [15] is a family of formal languages designed

for representation of thesauri, classification schemes, taxonomies, subject-heading systems,

or any other type of structured controlled vocabulary. Using SKOS, a knowledge organization

system can be expressed as machine-readable data. It can then be exchanged between

computer applications and published in a machine-readable format in the Web. The SKOS

data model is formally defined in this specification as an OWL Full ontology [16] [OWL-

SEMANTICS]. SKOS data are expressed as RDF triples, and may be encoded using any

concrete RDF syntax (such as RDF/XML [17] or Turtle [18]).

The SKOS data model views a knowledge organization system as a concept

scheme comprising a set of concepts. These SKOS concept schemes and SKOS concepts are

identified by URIs, enabling anyone to refer to them unambiguously from any context, and

making them a part of the World Wide Web. SKOS concepts can be labeled with any number

of lexical (UNICODE) strings in any given natural language. One of these labels in any given

language can be indicated as the preferred label for that language, and the others as

alternative labels. Labels may also be "hidden", which is useful where a knowledge

organization system is being queried via a text index. SKOS concepts can be linked to other

SKOS concepts via semantic relation properties. The SKOS data model provides support for

hierarchical and associative links between SKOS concepts. Again, as with any part of the

SKOS data model, these can be extended by third parties to provide support for more

specific needs. SKOS concepts can be grouped into collections, which can be labeled and/or

http://www.w3.org/TR/skos-reference/#ref-OWL-SEMANTICS
http://www.w3.org/TR/skos-reference/#ref-OWL-SEMANTICS

Background technologies 33

ordered. This feature of the SKOS data model is intended to provide support for node labels

within thesauri, and for situations where the ordering of a set of concepts is meaningful or

provides some useful information. Finally, SKOS concepts can be mapped to other SKOS

concepts in different concept schemes. The SKOS data model provides support for four basic

types of mapping link: hierarchical, associative, close equivalent and exact equivalent.

Figure 6 presents the SKOS representation of a concept found in the UK Archival Thesaurus

(UKAT).

Figure 6: SKOS example

2.10. Google Web Toolkit (GWT)

Google Web Toolkit (GWT) [19], first released in May 2006, is an open source development

toolkit for building and optimizing complex browser-based applications. Its goal is to enable

productive development of high-performance web applications without the developer

having to be an expert in browser quirks.

Today's RIAs (Rich Internet Applications, i.e. desktop like web applications) are getting

complex and large in size. Writing AJAX applications in JavaScript is error prone. Managing

large applications in JavaScript is complex, difficult and directs to an entirely new discipline.

Also, JavaScript behaves differently on different browsers. Developers spend a lot of

valuable time having to code for browser differences instead of focusing on real application

logic. Also, developers tend to mix the business logic in the view of web applications using

JavaScript.

34 Chapter 2

RIA application development with GWT gives Java developers the ability to reuse their

existing expertise and best practices. GWT gives ease of developing large applications, as

Java was designed to make large applications manageable in object oriented fashion. With

GWT, besides, having all the advantages of Java as a programming language, developers can

use a large number of Java development tools that already exist. They can use their favorite

IDE, perform compile time checking, unit testing and even continuous integration. GWT also

handles all browser-specific quirks meaning that compiled GWT application runs inside any

modern browser (assuming JavaScript is turned on), so that developers can focus on the

application logic. GWT basically translates all the Java UI code to JavaScript. However, it

does not mean that the old JavaScript code or application will become useless. GWT still

allows interacting with existing JavaScript code as well as integrating with existing server

side services. Another important functionality GWT provides is that, it separates server side

logic from client side creating separate packages for the client and the server.

Google provides a plugin for Eclipse which handles most GWT related tasks in the IDE

including creating projects, invoking the GWT compiler, creating GWT launch configurations,

validations, syntax highlighting, etc. In our thesis work, we have used a GWT SDK of version

2.3 plugin to work in Eclipse environment.

2.10.1. GWT Components

GWT provides a comprehensive set of tools including UI components to configuration tools

to server communication techniques and this help web applications look, act, and feel like

full-featured desktop applications. Major GWT components are as follows.

 GWT Java-to-JavaScript Compiler
This is the core part of GWT. This compiler converts Java code into JavaScript code
in such a way, that the compiled JavaScript can run on the major internet browsers.
The supported browsers include Internet Explorer, Firefox, Mozilla, Opera, and
Safari.

 JRE emulation library
To provide developer to use some classes of core Java, GWT includes JRE (Java
Runtime Environment) emulation library. This library supports some classes from
java.lang and java.util packages.

 GWT Web UI class library
GWT ships with a large set of custom interfaces and classes for creating widgets
and panels. Widget is some sort of control used by a user, and a panel is a
container into which controls can be placed.

2.10.2. GWT Modes of Running

GWT applications can run on two following modes.

Background technologies 35

 Development Mode (Hosted Mode)
This mode can be addressed as debug mode also. With this mode, GWT allows
developers to debug their application as in any Java application. In this mode, Java
code is executed and widgets are displayed in a host window that emulates a web
browser.

 Web Mode
This mode executes the JavaScript code generated from the compilation of client
side Java code. The Web mode is actually the deployment of Ajax web application
with GWT framework on a genuine application server.

2.10.3. Remote Procedure Calls (RPCs)

GWT provides an RPC mechanism based on Java Servlets to provide access to server side

resources. This mechanism includes generation of efficient client and server side code to

serialize objects across the network using deferred binding.

A fundamental difference between AJAX applications and traditional HTML web applications

is that AJAX applications do not need to fetch new HTML pages while they execute. Because

AJAX pages actually run more like applications within the browser, there is no need to

request new HTML from the server to make user interface updates. However, like all

client/server applications, AJAX applications usually do need to fetch data from the server as

they execute. The mechanism for interacting with a server across a network is called making

a remote procedure call (RPC). GWT RPC makes it easy for the client and server to pass Java

objects back and forth over HTTP.

The server-side code that gets invoked from the client is often referred to as a service, so

the act of making a remote procedure call is sometimes referred to as invoking a service.

Java components of the GWT RPC Mechanism

When setting up GWT RPC, we focused on these three elements involved in calling

procedures running on remote servers.

 the service that runs on the server (the method we are calling)
 the client code that invokes the service
 the Java data objects that pass between the client and server.

Both the server and the client have the ability to serialize and deserialize data so the data

objects can be passed between them as ordinary text.

In Figure 7, they are depicted the components of the GWT RPC Mechanism.

 As we can see, in order to define our RPC interfaces (in this example,

CollectionAccessService interface), we need to:

36 Chapter 2

1. Define an interface (CollectionAccessService) for our service that extends
RemoteService interface and lists all our RPC methods.

2. Define a class (CollectionAccessServiceImpl) to implement the server-side code that
extends RemoteServiceServlet and implements the interface we created above.

3. Define an asynchronous interface (CollectionAccessServiceAsync) to our service to
be called from the client-side code.

Figure 7: Components of GWT RPC Mechanism

The nature of asynchronous method calls requires the caller to pass in a callback object that

can be notified when an asynchronous call completes, since by definition the caller cannot

be blocked until the call completes. For the same reason, asynchronous methods do not

have return types; they generally return void. After an asynchronous call is made, all

communication back to the caller is via the passed-in callback object.

The name convention that is adopted for our services is:

 The interface for each service that lists all its RPC methods is named as
ServiceNameService.

 The class that implements the server-side code and implements the previous
interface is named as ServiceNameServiceImpl.

Finally, the asynchronous interface to the service that is called from client-side is
named as ServiceNameServiceAsync.

Background technologies 37

2.10.4. Locales in GWT

GWT is different than most toolkits by performing most locale-related work at compile time

rather than runtime. This allows GWT to do compile-time error checking, such as when a

parameter is left out or the translated value is not of the correct type, and for optimizations

to take into account known facts about the locale. This also allows an end user to download

only the translations that are relevant for them.

Internationalization Techniques

GWT offers multiple internationalization techniques to afford maximum flexibility to GWT

developers and to make it possible to design for efficiency, maintainability, flexibility, and

interoperability in whichever combinations are most useful.

 Static string internationalization

Static string internationalization requires very little overhead at runtime and
therefore is a very efficient technique for translating both constant and
parameterized strings. It is also the simplest technique to implement. Static string
internationalization uses standard Java properties files to store translated strings
and parameterized messages, then implements strongly-typed Java interfaces to
retrieve their values.

 Dynamic string internationalization

Dynamic string internationalization is slower than static string internationalization,
but is very flexible. Applications using this technique look up localized strings in the
module's host page; therefore, they do not need to be recompiled when it is added
a new locale. If it is needed to integrate a GWT application with an existing server-
side localization system, dynamic string internationalization is the option to
consider.

 Extending or implementing Localizable

The most powerful technique is to implement the Localizable interface.
Implementing Localizable allows you to go beyond simple string substitution and
create localized versions of custom types. It's an advanced internationalization
technique that you probably won't have to use very often.

Resource Bundles

In standard Java programming, internationalization is usually done by means of resource

bundles: .properties files with locale-specific data. Although this data might be anything

(numbers, dates, whatever) we have dealt only with strings. Each string is identified by a

“key,” which must remain constant across different resource bundles. Basically, in our code

we are referring to this key so our program will be locale-independent, inasmuch as what

string will be shown shall depend on which locale resource bundle we use. GWT supports

generic resource bundles (strings that will be shown if no other more specific locale is

chosen), language resource bundles (for example, English or Spanish versions of our strings),

38 Chapter 2

and even country-specific resource bundles (such as British English, or Mexican Spanish). In

our case, we have a generic bundle file, plus two language bundles (one for English and one

for Greek). All keys appear in the generic bundle file. If a certain key appears in several

bundles, language strings have priority over the generic ones. An example of bundles can be

seen in Table 5.

Transport.properties Transport_en.properties Transport_el.properties

flight=airplane flight=aeroplane flight=αεροπλάνο

Vehicle=car vehicle=αυτοκίνητο

underground=subway underground=tube underground=μετρό

Table 5: Internationalization Example in GWT.

In this case, a British user who wanted to use the underground would get a message about

the tube; Greek users would get references to the μετρό; everybody else (including other

non-British English speakers) would get the subway standard reference. (We consider

English as the standard language.)

Resource bundles are named with the interface name, followed by an underscore and a

lowercase two-character language specification. For example, the resource bundle for the

constants interface in Greek is named as Constants_el.properties file. The two-character

language specification was taken from ISO 639-1 list. ISO 639 is a standardized nomenclature

used to classify all known languages. Each language is assigned a 2-letter (639-1) lowercase

abbreviation, amended in later versions of the nomenclature.

 Finally, the resource bundles were written in UTF-8 encoding in order to represent every

character in the Unicode character set.

Constants

The Constants interface allows you to localize constant values in a type-safe manner, all

resolved at compile time.

Constants interface is used in order to create a collection of constant values of a variety of

types that can be accessed by calling methods (called constant accessors) on an interface.

Constant accessors may return a variety of types, including strings, numbers, booleans, and

even maps. A compile-time check is done to ensure that the value in a properties file

matches the return type declared by its corresponding constant accessor. In other words, if

a constant accessor is declared to return an integer, its associated property is guaranteed to

be a valid integer value — avoiding a potential source of runtime errors.

Background technologies 39

The Constants interface bind, at compile time, the provided resource bundles with our

provided code, to produce locale-specific versions of the code. Whenever the user browses

to our application, the loader code determines user’s browser type and his locale, and then

loads the compiled version of our system that matches those two parameters.

Messages

The Messages interface is used so as to create a collection of formatted messages that can

accept parameters. It substitutes parameters into messages and even re-orders those

parameters for different locales as needed. The format of the messages in the properties

files follows the specification in Java MessageFormat. The interface it is created contains a

Java method with parameters matching those specified in the format string. In addition, the

Messages interface supports Plural Forms to allow application to accurately reflect text

changes based on the count of something.

2.10.5. UIBinder framework

The UiBinder framework is used in order to build Widget and DOM structures from XML

markup. It allows you to build apps as HTML pages with GWT widgets sprinkled throughout

them.

Besides being a more natural and concise way to build a UI than doing it through code,

UiBinder can also make an app more efficient. Browsers are better at building DOM

structures by cramming big strings of HTML into innerHTML attributes than by a bunch of

API calls.

The UiBinder framework:

 helps productivity and maintainability — it's easy to create UI from scratch or

copy/paste across templates;

 makes it easier to collaborate with UI designers who are more comfortable with

XML, HTML and CSS than Java source code;

 provides a gradual transition during development from HTML mocks to real,

interactive UI;

 encourages a clean separation of the aesthetics of a UI (a declarative XML template)

from its programmatic behavior (a Java class);

 performs thorough compile-time checking of cross-references from Java source to

XML and vice-versa;

 offers direct support for internationalization that works well with GWT's i18n facility

and

 encourages more efficient use of browser resources by making it convenient to use

lightweight HTML elements rather than heavier-weight widgets and panels.

40 Chapter 2

However uiBinder is not a renderer. There are no loops, no conditionals, no if statements in

its markup. UiBinder allows you to lay out widgets. It's still up to the widgets themselves to

convert rows of data into rows of HTML.

Here's a very simple example of a UiBinder template that contains no widgets, only HTML:

<!-- HelloWorld.ui.xml -->
<ui:UiBinder xmlns:ui='urn:ui:com.google.gwt.uibinder'>
 <div>
 Hello, .
 </div>
</ui:UiBinder>

Below it is an example of a UiBinder template that uses the HorizontalPanel layout widget in

order to align horizontally a label and a button widget.

<!-- HelloWidgetWorld.ui.xml -->
<ui:UiBinder xmlns:ui='urn:ui:com.google.gwt.uibinder'
 xmlns:g='urn:import:com.google.gwt.user.client.ui'>
 <g:HorizontalPanel>
 <g:Label>Click me :</g:Label>
 <g:Button>Save</g:Button>
 </g:HorizontalPanel>
</ui:UiBinder>

In order to use a set of widgets in a ui.xml template file, we needed to tie their package to

an XML namespace prefix. That's what's happening in this attribute of the root <ui:uiBinder>

element: xmlns:g='urn:import:com.google.gwt.user.client.ui'. This says that every class in the

com.google.gwt.user.client.ui package can be used as an element with prefix g and a tag name

matching its Java class name, like <g:Label>.

Chapter 3

Functional Specification

This chapter describes the functional specification of the system that has to be deployed at

each museum in order to complete the ingestion, maintenance, curation and dissemination

of CHOs and metadata. It presents the definitions used throughout the document, specifies

the stakeholders of the system, lists the technical requirements that have to be met for

achieving the desired functionality and provides an in depth analysis for the tool’s

functionality.

To this end, Section 3.1 contains the definitions of the terms used in the whole document,

Section 3.2 presents the system’s stakeholders and their role in the NH Cultural Heritage

Portal of the Natural Europe, while Section 3.3 discusses the technical requirements of the

tool. Finally, Section 3.4 provide an in depth analysis of the functionality that has to be

provided by the system in the form of use cases.

3.1. Definitions

 Cultural Heritage Object (CHO): refers to any type of cultural heritage content item

that is digitized and that belongs to a collection held by a cultural institution. Such

collections may belong to public cultural and scientific institutions (e.g. libraries,

archives and museums) as well as private content holders (e.g. publishers). They

may include all types of physical cultural items that have been digitized (e.g. books,

audiovisual or multimedia material, photographs, documents in archives etc.) or

material originally produced in digital format.

 Cultural Heritage Object Collection (CHO Collection): Any collection of Cultural

Heritage Objects and/or Cultural Heritage Object Metadata.

42 Chapter 3

 Cultural Heritage Object Collection Metadata (CHO Collection Metadata): A

description about the common characteristics of the CHOs in the context of a CHO

Collection that follows a specific structure (e.g., DC, etc.).

 Cultural Heritage Object Metadata (CHO Metadata): Description about a Cultural

Heritage Object that follows a specific structure (e.g., ESE, DC, etc.).

 Cultural Heritage Object Thumbnail (CHO Thumbnail): A representative image for a

published Cultural Heritage Object.

 Published Cultural Heritage Object (Published CHO): Any Cultural Heritage Object

that can be accessed (in the original, or lower quality) by the end users through the

Web and not necessarily for free.

3.2. Stakeholders

In Natural Europe the participating NHMs will contribute metadata about a large number of

Natural History related CHOs which will be aggregated by the project and exploited for

educational purposes. These CHO metadata will be further harvested by Europeana.eu in

order to become available through its portal. Moreover, the NHMs will semantically enrich

the contributed descriptions with Natural Europe shared knowledge (shared vocabularies,

taxonomies, etc.).

In the perspective under consideration (as a Cultural Heritage Environment), the system

stakeholders are:

 The Natural History Museums. The participating NHMs are the main content

providers, contributing CHO metadata records that will be exploited, as a next step,

for learning purposes. This means that appropriate descriptions and semantic

enrichments have to be done. Before that, it must be ensured that any existing

descriptions that NHMs have about their objects will be properly migrated, reused

and exploited in the Natural Europe environment.

 Natural Europe Federation. The metadata records provided by the NHMs will be

aggregated in the Natural Europe Federation. The aggregated content will then be

available for dissemination to the Europeana.eu, as well as to third-party federations

like the BHL [20] the Organic.Edunet [21], etc.

 The Europeana.eu. The contributed CHO metadata records of each participating

NHM will be made available through the Europeana.eu Portal after being harvested

from the Natural Europe Federation. Therefore each CHO has to be published,

described, licenced, and maintained following the Europeana.eu specifications and

policies.

Functional Specification 43

3.3. Technical requirements

This section discusses the technical requirements that were set in the development of the

EuroMuse tool, based on the Europeana.eu metadata submission practices, Europeana.eu

proposed software tools, as well as basic NHM requirements.

To this end, the basic technical requirements that have to be met are summarized below:

 Application Development: The tool supporting the CHO metadata annotation in

each NHM should be easy to install. For that, a web application delivered via a

typical Web browser installed in a single NHM’s server seems to be the best choice,

compared to a desktop application that requires installation in multiple NHM’s

terminals. Moreover this choice seems to empower the collaboration between the

NHM’s curators that will be the main users of the system. To this end, Europeana.eu

proposes the Google Web Toolkit (GWT) [19] for Web application development.

GWT is a platform for developing Rich Internet Applications (RIA), which are typical

web applications having many of the characteristics of desktop applications.

 User Support: EuroMuse has to support different user categories having specific

access rights. This is a fundamental requirement in almost every content

management application. At least the following three user categories have to be

supported:

o Administrator: Allowed to review/create/update/delete user accounts, CHO

collections and CHO metadata records.

o Curator: Allowed to review/create/update/delete CHO collections and CHO

metadata records.

o Guest: Allowed only to review CHO collections and CHO metadata records.

 Conformance to ESE/EDM Metadata Models: The application to be developed is

required to support the metadata enrichment of a CHO using Europeana.eu

compliant schemas (i.e., ESE [2] and EDM [22] schemas) since the contributed

metadata records will be aggregated, in a later step, to the Europeana.eu.

 Metadata Unification: The migration of already existing NHM legacy metadata to

ESE compliant records has to be also supported. Europeana.eu offers the SIP Creator

tool [23], a standalone Java application (although web-launched) designed to

support the easy transformation of any record-based XML input into the ESE format.

Using this tool, the NHM curators will be able to transfer their legacy metadata to

the NHM Cultural Environment tools, for further enrichment.

 CHO Publishing: The publishing of NHM CHOs is required to be supported, since the

Europeana.eu receives metadata descriptions only for Web accessible resources.

 Thumbnail Creation: In case that the NHMs do not have published thumbnails for

their CHOs, the tools should be able to automatically create and publish CHO

thumbnails. This functionality is important to be supported, since the URL of the

CHO thumbnail is included in the ESE metadata elements, and according to

44 Chapter 3

Europeana.eu policies, the metadata records that do not contain a thumbnail URL

for the described object will appear last in the search results of the Europeana.eu in

the future. To this end, the use of ImageMagick [24] and FFmpeg [25] for thumbnail

creation is proposed by the Europeana.eu. ImageMagick is an open source software

suite for displaying, converting and editing raster image files, while FFmpeg is an

open source project that produces libraries and programs for

handling multimedia data including video files.

 OAI-PMH Compliant Metadata Dissemination: The repository of the application has

to implement the OAI-PMH [26] interface, in order to enable the CHO metadata

harvesting from the Natural Europe Federation. The OAI-PMH specifies a method for

digital repositories (“data providers”) to expose metadata about their objects for

harvesting by aggregators (“service providers”). It is used by several organizations

and Europeana.eu considers it as a best practice for metadata harvesting.

3.4. Use cases

EuroMuse is the front-end application that each museum will use for the semantic

annotation of its CHOs, as well as for the publishing of the CHOs in the case that the

contributed CHOs are not already published. This section presents an analysis of the basic

functionality of the application in the form of use cases.

EuroMuse is basically used to facilitate the importing, organization, and describing of the

museum’s CHOs by the museum curators. Its main functionality includes the following

operations:

 Create/delete/update/review CHO Collections

 Describe CHO Collections (with appropriate metadata)

 Create/delete/update/review/import/export CHO Metadata

 Import/publish/update/delete CHOs

 Create/delete/update/manage Users

The primary actors of the application are the users (i.e., physical persons) acting upon it to

achieve certain goals (e.g., the import of a CHO in the system). According to the technical

requirements described in Section 3.3, these users are grouped in three categories

(minimum requirement) based on their access rights: (a) administrators, (b) curators, and (c)

guests. Apart from the physical persons, the back-end infrastructure of the application, the

repository, can be considered as a secondary actor of the system. It acts as an external

system providing a set of services, dealing basically with the storage/update/retrieval of

both content and metadata, to the application in order to accomplish several user goals.

Figure 8 presents a Use Case Diagram, as an overview of the EuroMuse functionality

illustrating the actors of the system, their goals (represented as use cases), as well as any

dependencies between those goals.

Functional Specification 45

Figure 8: Use Case Diagram of the application.

46 Chapter 3

Use Case 1 “Log in”

Goal In Context A user wants to be logged in the system in order to use

the system’s services.

Scope & Level System, Sub-function

Preconditions The user has already an account to the system.

Success End Condition The system authenticates the user and the user logs in the

system.

Failed End Condition The user couldn’t be logged in the system.

Primary, Secondary Actors Guest, Curator, Administrator

Trigger The user visits the application url without being already

logged in.

Description Step Action

1 The system displays the log in form.

2
User fills in the form with his credentials and

selects to log in.

3
The system validates the submitted form details,

checks if the user credentials are correct.

4
The system displays the first page according to

the type of the user’s account.

Extensions Step Branching Action

3a

There is another user already logged in the

system with the same account.

1. The system informs the user that there

is another user already logged in.

2. Use case fails.

3b

The user credentials are incorrect.

1. The system informs the user that the

username or password is incorrect and

prompts him to try again.

2. Use case fails.

Use Case 2 “Logout”

Goal In Context The user wants to be logged out from the system.

Scope & Level System, Sub-function

Preconditions The user is already logged in the system.

Success End Condition The user is logged out from the system.

Failed End Condition The user couldn’t be logged out from the system.

Primary, Secondary Actors Guest, Curator, Administrator

Trigger The user selects to logout from the system.

Description Step Action

1 The system logs the user out of the system.

2 The system displays the login screen.

Functional Specification 47

Use Case 3 “Create CHO Collection”

Goal In Context The user wants to create a new CHO collection.

Scope & Level System, Sub-function

Preconditions The user has already logged in the system and his user class

is curator or administrator.

Success End Condition The user creates a new collection.

Failed End Condition No new collection has been created.

Primary, Secondary Actors Curator, Administrator

Trigger The user selects to create a new collection using the

application menu.

Description Step Action

1
The system asks the user for the new

collection’s name.

2 The user enters the name of the collection.

3 The system validates the user’s input.

4
The system creates the collection with the

given name and adds it to the collection list.

5
The system informs the user about the

creation of the collection.

6
The system shows the metadata of the

collection (use case 9).

Extensions Step Branching Action

2a

The collection name is empty.

10.1. The system informs the user about the

error, and asks him to complete the name

field.

10.2. Use case stays at step 2 until a valid

collection name is inserted.

48 Chapter 3

Use Case 4 “Create CH Object”

Goal In Context User wants to create an object in an existing collection.

Scope & Level System, Sub-function

Preconditions There is already at least one collection in the system, the user

is already logged in and he is a curator or administrator.

Success End Condition The user creates a new object.

Failed End Condition The user couldn’t create a new object.

Primary, Secondary Actors Curator, Administrator

Trigger The user selects to create a new object using the application

menu.

Description Step Action

1
The system checks if there is a selected

collection.

2
The system updated the collection list with

a new object under the selected collection.

3

The system displays the object’s metadata

(all the elements are blank when the object

is first created).

4
The user fills in the metadata elements and

saves the object.

5
The system checks if all required fields have

been completed by the user.

6
The system creates a new object and

notifies the user.

7
The system displays the newly created

object with its metadata.

Extensions Step Branching Action

1a
User hasn’t selected any collection.

1. The system informs the user.

5a

The required fields were not completed.

1. The system informs the user and

displays the object’s metadata.

Functional Specification 49

Use Case 5 “Import record-based XML metadata”

Goal In Context User wants to import legacy metadata into the system.

Scope & Level System, Sub-function

Preconditions The user is already logged in as Administrator/Curator, and the

metadata are in record-based xml format.

Success End Condition The user imports the metadata in the system.

Failed End Condition The metadata have not been imported.

Primary, Secondary Actors Curator, Administrator

Trigger The user selects the Metadata Import option from the

application menu.

Description Step Action

1
The system displays a number of options for

the import process (e.g. files for upload).

2
The user fills in the form with the requested

information and submits them.

3

The system transforms the imported

metadata to ESE format using the mappings

provided, and creates the new CHO

metadata records.

4
The system notifies the user about the

result of the import.

Extensions Step Branching Action

3a

An error occurred during the transformation

of the metadata.

1. The system informs the user.

2. Use case fails.

50 Chapter 3

Use Case 6 “Import ESE metadata”

Goal In Context User wants to import ESE metadata into the system.

Scope & Level System, Sub-function

Preconditions The user is already logged in as Administrator/Curator, and the

metadata are in valid ESE format.

Success End Condition The user imports the metadata in the system.

Failed End Condition The metadata have not been imported.

Primary, Secondary Actors Curator, Administrator

Trigger The user selects the ESE Metadata Import option from the

application menu.

Description Step Action

1 The system displays a number of options for

the import process.

2 The user fills in the form with the requested

information and submits them.

3 The system validates the imported

metadata, and creates the new CHO

metadata records.

4 The system notifies the user about the

result of the import.

Extensions Step Branching Action

3a An error occurred during the validation of

the metadata.

1. The system informs the user.

2. Use case fails.

Functional Specification 51

Use Case 7 “Import CH Object”

Goal In Context User wants to import CH objects into the system.

Scope & Level System, Sub-function

Preconditions The user is already logged in as Administrator/Curator.

Success End Condition The user imports the CH objects in the system.

Failed End Condition The CH objects have not been imported.

Primary, Secondary Actors Curator, Administrator

Trigger The user selects the “File->Import->Media Objects” option

from the menu bar.

Description Step Action

1
The system displays a number of options for

the import process.

2
The user fills in the form with the requested

information and submits them.

3
The system validates the imported data,

and creates the new CHOs.

4
The system notifies the user about the

result of the import.

Extensions Step Branching Action

3a

An error occurred during the import of the

objects.

1. The system informs the user.

2. Use case fails.

52 Chapter 3

Use Case 8 “Export ESE metadata”

Goal In Context User wants to export the metadata of a collection/record in

ESE format.

Scope & Level System, Sub-function

Preconditions The user is already logged in as Administrator/Curator.

Success End Condition The user has successfully exported the metadata.

Failed End Condition The metadata have not been exported.

Primary, Secondary Actors Guest, Curator, Administrator

Trigger The user selects the Export ESE Metadata option from the

menu bar.

Description Step Action

1

The user selects the collection or record

from the Collection Browser Widget, for

which he wished the metadata to be

exported.

2

The system converts the metadata to ESE

format and prompts the user to save the

produced xml file.

3
The user saves the metadata file to his

computer.

Extensions Step Branching Action

2a

An error occurred during the export of the

metadata.

1. The system informs the user.

2. Use case fails.

Functional Specification 53

Use Case 9 “Review CHO Collection metadata”

Goal In Context User wants to review the metadata of a collection.

Scope & Level System, Sub-function

Preconditions The user is already logged in and there are CHO Collections

already in the system.

Success End Condition The user reviews the metadata of the CHO Collection.

Failed End Condition The user couldn’t review the CHO Collection’s metadata.

Primary, Secondary Actors Guest, Curator, Administrator

Trigger The user selects a CHO Collection from the collection list.

Description Step Action

1

The system checks if the previously

reviewed CHO Collection/CHO has unsaved

changes.

2
The system displays the selected CHO

Collection’s metadata.

Extensions Step Branching Action

1a

The previously reviewed CHO

Collection/CHO has unsaved changes.

1. The system informs the user and

prompts him to save or discard the

changes before continuing.

1a

The CHO Collection has been deleted by

another user.

1. The system informs the user.

54 Chapter 3

Use Case 10 “Review CHO metadata”

Goal In Context User wants to review the metadata of a CHO.

Scope & Level System, Sub-function

Preconditions The user is already logged in and there are CHO metadata

records already in the system.

Success End Condition The user reviews the metadata of the record.

Failed End Condition The user couldn’t review the record metadata.

Primary, Secondary Actors Guest, Curator, Administrator

Trigger The user selects a record from the collection list.

Description Step Action

1

The system checks if the previously

reviewed collection/record has unsaved

changes.

2
The system displays the selected record’s

metadata.

Extensions Step Branching Action

1a

The previously reviewed collection/record

has unsaved changes.

1. The system informs the user and

prompts him to save or discard the

changes before continuing.

1a

The record has been deleted by another

user.

1. The system informs the user.

Functional Specification 55

Use Case 11 “Update CHO Collection metadata”

Goal In Context User wants to update the metadata of a collection.

Scope & Level System, Sub-function

Preconditions The user is already logged in and he is curator or administrator.

Success End Condition The user updates the metadata of the collection successfully.

Failed End Condition The user couldn’t update the metadata.

Primary, Secondary Actors Curator, Administrator

Trigger The user selects to Update an already open collection.

Description Step Action

1
The reviews a collection from the collection

list (use case 9).

2 The user selects to edit the open collection.

3

The system displays all the metadata

elements available, based on the

application profile.

4
The user edits/adds/deletes the metadata

information and saves the changes.

5
The system checks the user’s input and sees

if all required fields have been completed.

6
The system updates the collection and

notifies the user.

7
The system displays the object’s updated

metadata.

Extensions Step Branching Action

3a.

Another user is already editing the

collection

1. The system informs the user.

2. The user has to wait until the

editing of the collection has been

completed by the other user.

4a

The required fields were not completed.

1. The system informs the user.

2. User corrects the input before

continuing the use case.

56 Chapter 3

Use Case 12 “Update CHO metadata”

Goal In Context User wants to update the metadata of a CHO.

Scope & Level System, Sub-function

Preconditions The user is already logged in and he is curator or administrator.

Success End Condition The user updates the metadata of the CHO successfully.

Failed End Condition The user couldn’t update the metadata.

Primary, Secondary Actors Curator, Administrator

Trigger The user selects to update an already open record.

Description Step Action

1
The user reviews a CHO from the collection

list (use case 10).

2 The user selects to edit the open CHO.

3

The system displays all the metadata

elements available, based on the

application profile.

4
The user edits/adds/deletes the metadata

information and saves the changes.

5
The system checks the user’s input and sees

if all required fields have been completed.

6
The system updates the CHO and notifies

the user.

7
The system displays the object’s updated

metadata.

Extensions Step Branching Action

3a.

Another user is already editing the object.

1. The system informs the user.

2. The user has to wait until the

editing of the object has been

completed by the other user.

4a

The required fields were not completed.

1. The system informs the user.

2. User corrects the input before

continuing the use case.

Functional Specification 57

Use Case 13 “Delete CHO Collection”

Goal In Context User wants to delete a CHO collection.

Scope & Level System, Sub-function

Preconditions The user is already logged in and he is curator or administrator.

Success End Condition The user deletes the collection successfully.

Failed End Condition The user couldn’t delete the collection.

Primary, Secondary Actors Curator, Administrator

Trigger The user selects to Delete an already open collection.

Description Step Action

1
The selects to update a collection from the

collection list (use case 11).

2
The user selects to delete the open

collection.

3
The system deletes the collection and

notifies the user.

Use Case 14 “Delete CH Object”

Goal In Context User wants to delete a CHO.

Scope & Level System, Sub-function

Preconditions The user is already logged in and he is curator or administrator.

Success End Condition The user deletes a CHO successfully.

Failed End Condition The user couldn’t delete the CHO.

Primary, Secondary Actors Curator, Administrator

Trigger The user selects to delete an already open record.

Description Step Action

1
The user edits a CHO from the collection list

(use case 12).

2 The user selects to delete the open CHO.

3
The system deletes the CHO and notifies the

user.

58 Chapter 3

Use Case 15 “Change CHO”

Goal In Context User wants to change the media object of the CHO.

Scope & Level System, Sub-function

Preconditions The user is already logged in as Administrator/Curator.

Success End Condition The media object of the CHO has been changed.

Failed End Condition The media object has not been changed.

Primary, Secondary Actors Curator, Administrator

Trigger The user selects the Change Media Object option from the

menu.

Description Step Action

1

The user selects a CHO from the CHO

Collection list for update (use case 12) and

selects to change its media object from the

menu.

2

The system asks the user to choose from

already published or unpublished media file

and complete the corresponding form.

3

The user inserts the URI of the object if it is

already published on the web, or the media

file from his pc and submits the form.

4

The system creates thumbnails for the

media object and publishes the file if it is

unpublished.

5
The system displays the newly created

thumbnail.

6
User saves the updated objet in order for

the change to complete.

Extensions Step Branching Action

4a

An error occurred during the creation of the

thumbnail or the publishing of the object.

1. The system informs the user.

2. Use case fails.

Functional Specification 59

Use Case 16 “Create new user”

Goal In Context The user creates a new user of the system.

Scope & Level System, User Level

Preconditions The user is already logged in and he has administrative

privileges.

Success End Condition The user creates a new user successfully.

Failed End Condition No new user has been created.

Primary, Secondary Actors Administrator

Trigger The user selects to create a new user.

Description Step Action

1
The system displays a form with the fields

required for the creation of a user.

2
The user fills in the form and submits the

new user details to the system.

3 The system validates the user’s input.

4
The system creates the new user and

displays a confirmation.

Extensions Step Branching Action

3a

The required fields were not completed, or

the input was invalid.

 The system informs the user

 The user has to correct the input

before continuing.

60 Chapter 3

Use Case 17 “Update user accounts”

Goal In Context The user wants to update the user accounts.

Scope & Level System, Sub-function

Preconditions The user is already logged in and he has administrative

privileges.

Success End Condition The user updates the accounts successfully.

Failed End Condition The user couldn’t update the accounts.

Primary, Secondary Actors Administrator

Trigger The user selects to update the user accounts from the

administrative menu.

Description Step Action

1
The system displays a list with all the users’

account details.

2
The user updates any field from any account

and selects to save the changes.

3 The system validates the user’s input.

4
The system saves the changes and updates

the list of the user account details.

Extensions Step Branching Action

3a

The required fields were not completed, or

the input was invalid.

 The system informs the user

 The user has to correct the input

before continuing.

Chapter 4

The ESE-CHO Application Profile

This chapter presents the ESE-CHO Application Profile that will serve as the basis for the

description of the Cultural Heritage Objects (CHOs) that will be populated into the Natural

Europe repositories using our application. The application profile has been based on the

Europeana Semantic Elements specification.

The ESE-CHO Application Profile consists of the following parts:

 The basic information, that groups the general information that describes a CHO as a

whole

 The Life Cycle information, that describes the history and current state of a CHO and

those entities that have affected this object during its evolution using the EuroMuse

application(as well as the status of this CHO within the underlying repository)

 The Technical information, that describes the technical requirements and

characteristics of a CHO

 The Relation information, that defines the relationship between a CHO and other

CHOs, if any

 The Collection information, that provides metadata information for logical groupings

of contributed CHOs within a museum

 The Europeana information, that provides various Europeana related metadata

information needed for describing this CHO.

In the next sections we provide the various elements that belong to the above-mentioned

information parts based on their type (mandatory, recommended, optional) and not the

information part where they belong to. In addition, some elements are characterised as

mandatory although they are automatically generated (i.e. without user intervention). For

62 Chapter 4

each element we also provide a short table that contains its Namespace and Datatype as

well as the method of its input (manual, automatic), and indicative examples of element

value(s) for both the GUI of the application and its internal representation. Last, for each

mandatory/recommended element we also indicate the usage (way of exploitation) of this

element in the Europeana.eu portal.

Table 6 summarises the elements referring to CH Objects, grouped by importance, as appear

in the Europeana/ESE specification and in our ESE-CHO Application Profile. It also provides

the element mappings between the two specifications.

Europeana/ESE Mandatory

elements

ESE-CHO Mandatory elements for

CHOs

dc:title or dc:description Title

Description

dc:language for text objects Language.

Strongly Recommended data

element where available.

Mandatory data element if

element Type is “Text”

dc:subject or dc:type or

dc:coverage or dcterms:spatial

Subject

Spatial Coverage

Date (or refinements:

Date Created, Date Issued)

europeana:isShownAt or

europeana:isShownBy

Context URL or Object URL

 Thumbnail URL

europeana:type Content Type

europeana:dataProvider Data provider

 Country

europeana:provider Provider

The ESE-CHO Application Profile 63

europeana:rights Licence

 Version

 Accessibility

 Status

Europeana/ESE Recommended

elements

ESE-CHO Recommended elements

for CHOs

 Classification

dcterms:alternative Alternative Title

dc:creator Creator

dc:contributor Contributor

dc:publisher Publisher

dc:type Type

europeana:object See above (Thumbnail URL)

dc:date see above (Date)

dcterms:created see above (Date Created)

dcterms:issued see above (Date Issued)

dcterms:temporal Temporal Coverage

dc:coverage Coverage

dc:source Source

dcterms:isPartOf Is Part Of

64 Chapter 4

Values supplied by Europeana

europeana:language

europeana:uri

europeana:year

Table 6: Summary of ESE/ESE-CHO elements

Table 7 summarises the elements referring to CHO Collections, grouped by importance, as

appear in our ESE-CHO Application Profile. These elements are not mapped to any ESE

elements as the ESE specification does not define any metadata elements for the description

of CHO Collections.

ESE-CHO Mandatory elements

for CHO Collections

Title

Creator

Subject

ESE-CHO Recommended

elements for CHO Collections

Description

Contributor

Type

Identifier

Coverage

Table 7: Summary of ESE-CHO Collection elements

The ESE-CHO Application Profile 65

4.1. Data types

Four data types are considered:

String: the text can be entered in the element directly (e.g. “ISBN”, “Natural Europe”, “canis

lupus”, etc.).

LangString: the text must identify its language and there can be one or more character

strings in the element (e.g. “en”, “natural history”).

DateTime: the element contains date and time information and there can also be textual

information about this point in time (e.g. “2008-07-21”, “iron age”).

VocabularyTerm: the element contains a source and a value part, where source is a

reference to sourced and maintained value set and value is a literal value from that set (e.g.

“http://www.catalogueoflife.org/details/species/id/6850415 ”, “Canis lupus Linnaeus,

1758”).

4.2. Mandatory elements for a CH Object

We consider as mandatory elements those elements that a user is obliged to fill in order to

complete the description of the considered CH Object. The ESE considers that in order to

accommodate different object types and different metadata practices, some mandatory

elements are grouped together and only one in the group needs to be provided; but ideally

all elements in a group would be provided. This application profile described here adopts

this suggestion and adopts all elements in such a group as mandatory ones.

4.2.1. Title

The title or name by which the digital object is known. This is likely to be the title or name

also applied to the original physical object in the case of a digitisation. Use the refinement

Alternative Title for any title variants, translations etc. In case where the value in element

Classification is obtained as a term from the proposed classification scheme then the value

of the Title element is automatically filled with the preferred label of this term. User always

has the option to override this title and/or manually insert his/her own terms.

 title

Namespace dc

Datatype LangString

Method of input Automatic if chosen from element Classification,

then manually (User always has the option to

http://www.catalogueoflife.org/details/species/id/6850415

66 Chapter 4

override)

Example (gui)
(“lat”, “Mammuthus primigenius”)

(“eng”, “Wolf drinking water in natural habitat”)

Schema
“Mammuthus primigenius”@lat

“Wolf drinking water in natural habitat”@eng

Use/Exploitation

in the

Europeana.eu

portal

Simple search, Advanced search, Full search result

display (Title Line)

Table 8: ESE-CHO Title element overview.

4.2.2. Description

A prose description of the digital object or the original physical object in the case of a

digitisation, elaborating on the information in the metadata. The following are examples of

data that could be mapped to the description element:

 statements relating to a technique applied to an object in terms of technology

 statements where a technique includes reference to a material.

 statements about an event relating to an object

 description

Namespace dc

Datatype LangString

Method of input Manual

Example (gui) (“en”, “The molar tooth of woolly mammoth,

dated back to about 10 000-10 500 radiocarbon

years is one of youngest mammoth finds in

Europe.”)

(“et”, “Puurmani lähistelt leitud karvase mammuti

purihammas on Euroopa üheks noorimaks

mammutileiuks. Selle vanuseks on määratud 10

000-10 500 radiosüsiniku aastat.”)

The ESE-CHO Application Profile 67

Schema “The molar tooth of woolly mammoth, dated back

to about 10 000-10 500 radiocarbon years is one

of youngest mammoth finds in Europe.”@en

Use/Exploitation

in the

Europeana.eu

portal

Simple search, Full search result display

(Description Line)

Table 9: ESE-CHO Description element overview.

4.2.3. Language

A value in this element is mandatory for “TEXT” objects and strongly recommended for

other objects that have a language component, such as image legends. This element should

be used to state the language of the digital object and should be repeated if the object has

more than one language. If there is no language aspect to the object (for instance, a

photograph) then the element should be ignored. The value(s) of this element should

conform to ISO 639-2 (the three character code) specification. This element is not used to

indicate the language of the metadata.

 language

Namespace dc

Datatype String

Method of input Manual, based on the provided ISO 639-2

specification

Example (gui) (“est”)

Schema “est”

Use/Exploitation in

the Europeana.eu

portal

Simple search, Facet (Language), Full search result

display (Language Line)

Table 10: ESE-CHO Language element overview.

68 Chapter 4

4.2.4. Subject

The subject of the digital object or the original physical object in the case of a digitisation.

This can include topics, people and places but consider using the spatial and temporal

elements for places and time periods if the source data allows. Best practice is to use a

separate instance of the element for individual subject terms. In case where the value in

element Classification is obtained as a concept from the proposed classification scheme then

the value of the subject element is automatically filled with the classification hierarchy

preferred label(s) of this term. In this case the value(s) of this element are also terms of the

NE SKOSified classification scheme. User always has the option to override these terms

and/or manually insert his/her own terms.

 1.8 subject

Namespace naturaleurope

Datatype VocabularyTerm

Method of input Automatic if chosen from element 1.11

classification, then manually (User always has the

option to override)

Example (gui) (“animalia”)

(“chordata”)

(“mammalia”)

(“proboscidea”)

(“elephantidae”)

Schema “animalia”, “col:2362377”

“chordata”, “col:2362754”

“mammalia”, “col:2362755”

“proboscidea”, “col:2362869”

“elephantidae”, “col:2362870”

Use/Exploitation

in the

Europeana.eu

portal

Simple search, Advanced search, Full search result

display (Subject Line)

Table 11: ESE-CHO Subject element overview.

The ESE-CHO Application Profile 69

4.2.5. Version

The edition of a CH object during its evolution while it is managed in the context of Natural

Europe using EuroMuse.

 2.1 version

Namespace naturaleurope

Datatype String

Method of input Manual

Example (gui) (“1.2.alpha”)

Schema “1.2.alpha”

Use/Exploitation in

the Europeana.eu

portal

Not for use by Europeana.eu portal

4.2.6. Status

The completion status or condition of a CH object during its evolution while it is managed

using our application. The value(s) in this element are terms chosen from a controlled

vocabulary that is provided.

 status

Namespace naturaleurope

Datatype VocabularyTerm

Method of input Manual, based on the provided vocabulary

Example (gui) (“Editing in progress”)

Schema “EDITING_IN_PROGRESS”

Use/Exploitation

in the

Europeana.eu

portal

Not for use by Europeana.eu portal

Table 12: ESE-CHO Status element overview.

70 Chapter 4

The vocabulary terms provided are the following:

 EDITING_IN_PROGRESS

 EDITING_COMPLETE

 REVIEW_IN_PROGRESS

 COMPLETE

4.2.7. Object URL

This element will be active in the Europeana.eu portal and will provide a link to the digital

object on the provider website. This is a complementary element to element Context URL

(below) and it is mandatory to provide a URL link in one of these elements. To map to this

element the object should be directly accessible by the URL and reasonably independent at

that location. The inclusion of, for example, short copyright information or minimal

navigation tools would be acceptable in this element. The link should be to the object in its

best available resolution/quality. Our application provides the necessary functionality in

order to publish the object if not already published.

 uri

Namespace naturaleurope

Datatype URI

Method of input Automatic whenever possible using the

functionality of the application. For harvested

material the information is automatically

imported.

Example (gui) (“http://geokogud.info/elm/specimen_image/g31

9/g319-2_a.jpg”)

Schema “http://geokogud.info/elm/specimen_image/g31

9/g319-2_a.jpg”

Use/Exploitation in

the Europeana.eu

portal

 Full search result display

Table 13: ESE-CHO Object URL element overview.

The ESE-CHO Application Profile 71

4.2.8. Context URL

This element will be active in the Europeana.eu portal and will provide the link to the digital

object in full information context on the provider website. It is a complementary element to

element Object URL and it is mandatory to provide a URL link in one of these elements. If the

digital object is displayed with local metadata, with a header or banner, or if the object is

only accessible by clicking another icon on the local page then the Context URL element

should be used. Our application provides the necessary functionality in order to publish the

object if not already published.

 contextUri

Namespace naturaleurope

Datatype URI

Method of input Automatic whenever possible using the

functionality of the application. For harvested

material the information is automatically

imported.

Example (gui) (“http://geokogud.info/elm/specimen_image.php

?id=690”)

Schema “http://geokogud.info/elm/specimen_image.php?

id=690”

Use/Exploitation in

the Europeana.eu

portal

Full search result display

Table 14: ESE-CHO Context URL element overview.

4.2.9. Thumbnail URL

This element supports the process of creating small images (thumbnails) for use in the

Europeana.eu portal. This element should provide a link to the URL of a thumbnail

representing the digital object or, if there is no such thumbnail, the URL of the digital object

in the best resolution available on the web site of the data provider from which a thumbnail

could be generated. Our application provides the necessary functionality in order to

automatically create the thumbnail of a published object.

 sourceThumbnailUri

Namespace naturaleurope

72 Chapter 4

Datatype URI

Method of input Automatic whenever possible using the

functionality of our application. For harvested

material the information is automatically

imported.

Example (gui) (“http://147.27.41.103:8080/exist/rest//db/NHM

Repository/content/thumbs/src/1klc1jqvrc9bmhf

7glun3oa7b9”)

Schema “http://147.27.41.103:8080/exist/rest//db/NHMR

epository/content/thumbs/src/1klc1jqvrc9bmhf7

glun3oa7b9”

Use/Exploitation

in the

Europeana.eu

portal

Thumbnails

Table 15: ESE-CHO Thumbnail URL element overview.

4.2.10. Content Type

This element is used to support the Type facet in the Europeana.eu portal, the

categorisation of objects in the result display and assignment of the appropriate default icon

(if necessary). Europeana currently handles only four object types and uses a controlled

vocabulary of four words expressed in upper case as the value of this element: TEXT, IMAGE,

SOUND, and VIDEO.

 resourceType

Namespace naturaleurope

Datatype VocabularyTerm

Method of

input

Automatic whenever possible. User always has

the option to override. For harvested material the

information is simply imported or if not given

tried to be automatically detected.

Example (gui) (“IMAGE”)

Schema “IMAGE”

The ESE-CHO Application Profile 73

Use/Exploita

tion in the

Europeana.e

u portal

Simple search, Facet (Type), Advanced search, Full

search result display (Type Line)

Table 16: ESE-CHO Content Type element overview.

4.2.11. Date

This date element should be used to contain the most significant date in the life of the

digital object or the original physical object in the case of a digitisation. We recommend the

use of ISO 8601 starting with the year and hyphenating the day and month parts: YYYY-MM-

DD. As there are many ways of expressing dates and time periods and the values will display

in the full record in whatever form they are supplied. The values will also be used as the

basis for locating the object in the Timeline and the Date facet in the Europeana.eu portal

and this must be a machine-readable date. If you are using the more precise date terms of

dcterms:created or dcterms:issued these will also be used for the Timeline and Date facet.

Currently, the Europeana portal cannot use Before Christ, Before Common Era or Before

Present dates but such dates should be retained in the mapped metadata (i.e. dc:date) in

order to be present for future development of the Europeana.eu portal. Textual time

periods will display in a result list but cannot be represented in the Timeline or Date facet

and should also be provided as numeric dates.

 date

Namespace dc

Datatype LangString

Method of input Manual

Example (gui) (“2008-05-16”)

(“1601”, “1700”)

(“17
th

 century”)

Schema “2008-05-16”

“1601”, “1700”

“17
th

 century”

Use/Exploitation

in the

Europeana.eu

portal

Simple search, Advanced search, Full search result

display (Date Line)

Table 17: ESE-CHO Date element overview.

74 Chapter 4

4.2.12. Date Created

This is the date of the creation of the digital object or, in the case of a digitisation, the

original physical object. A refinement of the element Date (see above for fuller information

about the form of the date).

 created

Namespace dcterms

Datatype LangString

Method of input Manual

Example (gui) (“2008-05-16”)

(“1601”, “1700”)

(“Iron Age”)

Schema “2008-05-16”

“1601”, “1700”

“Iron Age”

Use/Exploitation

in the

Europeana.eu

portal

Simple search, Full search result display (Date

Line)

Table 18: ESE-CHO Date Created element overview.

4.2.13. Date Issued

The date when the digital object was formally issued or published. This is likely to be the

date the original physical object was issued in the case of a digitisation. A refinement of the

element Date (see above for fuller information about the form of the date).

 issued

Namespace dcterms

Datatype LangString

Method of input Manual

The ESE-CHO Application Profile 75

Example (gui) (“2008-05-16”)

(“1601”)

Schema “2008-05-16”

“1601”

Use/Exploitation

in the

Europeana.eu

portal

Simple search, Full search result display (Date

Line)

Table 19: ESE-CHO Date Issued element overview.

4.2.14. Spatial Coverage

This element is a refinement of element Coverage. Information about the spatial

characteristics of the original analogue or born digital object, i.e. what the resource

represents or depicts in terms of space. This may be a named place, a location, a spatial

coordinate or a named administrative entity. It is preferred to use this more specific element

for information about the spatial characteristics of the digital object or the original physical

object in the case of a digitisation. Values in this element will appear in the Geographic

coverage line of a full result display in the Europeana.eu portal.

 spatial

Namespace dcterms

Datatype LangString

Method of input Manual

Example (gui) (“en”, “Puurmani”)

(“en”, “Estonia”)

(“et”, “Puurmani”)

(“et”, “Eesti”)

Schema “Puurmani”@en

“Estonia”@en

“Puurmani”@et

“Eesti”@et

76 Chapter 4

Use/Exploitation

in the

Europeana.eu

portal

Simple search, Advanced search, Full search result

display (Geographic coverage Line)

Table 20: ESE-CHO Spatial Coverage element overview.

4.2.15. Data Provider

Most of the data sent to Europeana comes via Aggregators whose names are recorded in the

Provider element (element Provider supports one of the facets in the portal). This element,

DataProvider, is specifically introduced to allow the names of the organisations who supply

the data to an aggregator to be unambiguously recorded. The name should be the preferred

form of the name in the language the provider chooses as the default language for display in

the Europeana.eu portal. There can only be one instance of this element so countries

desiring to show the name in multiple languages may concatenate the different language

versions, for example: “Estonian Museum of Natural History / Eesti Loodusmuuseum”

The name that is provided for element DataProvider is not necessarily the institution where

the physical object is located. This element is automatically filled during the ingestion

process using the official name (see above) of the provider of a dataset.

 dataProvider

Namespace europeana

Datatype String

Method of input Automatic, filled during the ingestion phase

Schema “Estonian Museum of Natural History/

Eesti Loodusmuuseum”

Use/Exploitation in

the Europeana.eu

portal

Simple search, Advanced search, Full search result

display (Date Provider Line)

Table 21: ESE-CHO Data Provider element overview.

4.2.16. Country

This element is used to support the Country facet in the Europeana.eu portal. The country is

associated with the provider of a dataset.

The ESE-CHO Application Profile 77

 country

Namespace europeana

Datatype String

Method of input Automatic, filled during the ingestion phase

schema “ESTONIA”

Use/Exploitation in

the Europeana.eu

portal

Simple search, Facet, Full search result display

(Country Line)

Table 22: ESE-CHO Country element overview.

4.2.17. Provider

This element supports the Provider facet in the Europeana.eu portal and should contain the

name of the organisation that delivers data directly to Europeana. In Natural Europe project

this will be the name of an aggregator or the project's name.

 provider

Namespace europeana

Datatype String

Method of input Automatic, filled during the ingestion phase

Schema “The Natural Europe Project”

Use/Exploitation in

the Europeana.eu

portal

Simple search, Facet, Full search result display

(Provider Line)

Table 23: ESE-CHO Provider element overview.

4.2.18. Licence

The value in this element will indicate the usage and access rights that apply to the digital

object described in the metadata and to the small portal images (thumbnails) used in

Europeana. The value is a URL in a controlled form and is used in the Europeana.eu portal to

generate an appropriate badge for display beneath the preview of the object and as a search

refinement. The URLs should be constructed according to the specifications in the “Rights

78 Chapter 4

Guidelines”. They are constructed by adding a code indicating the copyright status of an

object to the domain name where that status is defined. The domains specified are

europeana.eu and creativecommons.org. The value of this element is taken from a

controlled vocabulary that is provided.

 8.4 licenceUri

Namespace naturaleurope

Datatype URI

Method of input Manual based on the provided

vocabulary

Example (gui) (“CC BY-NC”)

Schema “http://creativecommons.org/licenses/

by-nc/3.0/”

Use/Exploitation in the

Europeana.eu portal

Full search result display

The vocabulary terms provided are the following:

Europeana.eu domain

Rights Reserved - Free Access http://www.europeana.eu/rights/rr-f/

Rights Reserved - Paid Access http://www.europeana.eu/rights/rr-p/

Rights Reserved - Restricted Access http://www.europeana.eu/rights/rr-r/

Unknown http://www.europeana.eu/rights/unknown/

CreativeCommons domain

CC – Zero (universal) http://creativecommons.org/publicdomain/zero/1.0/

CC BY (v3.0 Unported) http://creativecommons.org/licenses/by/3.0/

CC BY-SA http://creativecommons.org/licenses/by-sa/3.0/

CC BY-NC http://creativecommons.org/licenses/by-nc/3.0/

CC BY-NC-SA http://creativecommons.org/licenses/by-nc-sa/2.0/

The ESE-CHO Application Profile 79

CC BY-ND http://creativecommons.org/licenses/by-nd/2.0/

CC BY-NC-ND http://creativecommons.org/licenses/by-nc-nd/1.0/

Table 24: ESE-CHO Licence element overview.

4.2.19. Accessibility

The access level of a CH object during its evolution while it is managed using our application.

Defines whether the CHO is accessible by the harvester using the OAI-PMH protocol. The

value(s) in this element are terms chosen from a controlled vocabulary that is provided.

 accessibility

Namespace naturaleurope

Datatype VocabularyTerm

Method of input Manual, based on the provided vocabulary

Example (gui) (“private”)

Schema “PRIVATE”

Use/Exploitation

in the

Europeana.eu

portal

Not for use by Europeana.eu portal

Table 25: ESE-CHO Accessibility element overview.

The vocabulary terms provided are the following:

 PRIVATE

 PUBLIC

4.3. Recommended elements for a CH Object

We consider as recommended elements those elements that a user is strongly

recommended to fill in order to provide an acceptable record annotation.

80 Chapter 4

4.3.1. Classification

The accepted scientific name of species, minerals, fossils and prehistoric artefacts. When

possible this Latin term should be preferably taken by the provided classification scheme.

For the purposes of the project the classification scheme has been SKOSified, therefore each

term is represented as a SKOS concept. The recorded value of this element along with its

related concepts within the SKOSified classification scheme are used for the automatic filling

of other elements; the element Title is filled with the Latin term of the species (preferred

label) and the element Subject is filled with the classification hierarchy terms of the species

(e.g. phylum, class, order, etc.). In any case the user can manually override the automatically

filled information. The schema definition of this element includes the SKOS term preferred

label and the SKOS concept uri.

 classification

Namespace naturaleurope

Datatype VocabularyTerm

Method of input Manual (an auto complete process based on the

proposed classification scheme is offered)

Example (gui) (“Cyprinus carpio”)

Schema “Cyprinus carpio”, “col:8617805”

Use/Exploitation

in the

Europeana.eu

portal

Not for use by Europeana.eu portal

Table 26: ESE-CHO Classification element overview.

4.3.2. Alternative Title

This can be any alternative title or name by which the digital object is known and will often

be the name also applied to the original physical object in the case of a digitisation. It can

include abbreviations or translations of the title, including common names (for the natural

history domain).

 alternative

Namespace dcterms

The ESE-CHO Application Profile 81

Datatype LangString

Method of input Manual

Example (gui) (“en”, “woolly mammoth”)

(“et”, “karvane mammut”)

Schema “karvane mammut”@et

Use/Exploitation in

the Europeana.eu

portal

Simple search, Advanced search, Full search result

display (Title Line)

Table 27: ESE-CHO Alternative Title element overview.

4.3.3. Creator

The name of the creator or creators of the original physical object or the born digital object.

Names can include those of people, organisations or services. Map each name to a separate,

repeated creator element if possible. Ideally choose a preferred form of name from an

authority source. If you do not use an authority source, use a consistent form of the name

e.g. Shakespeare, William. This element should not be confused with the element

Contributor. In the case of an animal photograph one could consider as Creator the

photographer and as Contributor the person that has (possibly) processed this photograph.

In the case of an exhibit photograph one could consider as Creator the person that set up

this exhibit and as Contributor the photographer of this exhibit. This is an indicative

example. However and with respect to the Europeana.eu portal it seems that for most of

the cases in the natural history domain (i.e. items already uploaded) there are not so many

creator(s) but mainly only contributor(s).

 creator

Namespace dc

Datatype LangString

Method of input Manual

Example (gui) (“en”, “Shakespeare, William”)

Schema “Shakespeare, William”@ en

Use/Exploitation in the

Europeana.eu portal

Simple search, Advanced search, Full search result

display (Creator Line)

82 Chapter 4

Table 28: ESE-CHO Creator element overview.

4.3.4. Contributor

The name of contributors to either the original physical object or the born digital object.

Names can include those of people, organisations or services. Map each name to a separate

repeated contributor element if possible. Ideally choose a preferred form of name from an

authority source. If you do not use an authority source, use a consistent form of the name

e.g. Shakespeare, William. For each contributor the kind of contribution has to be provided

as a role for the contributor. A number of roles are provided as vocabulary terms in the

MARC Code List for Relators (http://id.loc.gov/vocabulary/relators.html).

 contributor

Namespace naturaleurope

Datatype LangString

Method of input Manual

Example (gui) (“Friedrich Schmidt (collector)”)

(“Tiit Hunt (photographer)”)

Schema
“Tiit Hunt”, “photographer”,

“roles:http://id.loc.gov/vocabulary/relators/pht”

Use/Exploitation in

the Europeana.eu

portal

Simple search, Advanced search, Full search result

display (Creator Line)

Table 29: ESE-CHO Contributor element overview.

4.3.5. Publisher

The name of the publisher (the entity responsible for making the resource available) of the

digital object or the original physical object in the case of a digitisation.

 publisher

Namespace dc

Datatype LangString

Method of input Manual

http://id.loc.gov/vocabulary/relators.html

The ESE-CHO Application Profile 83

Example (gui) (“en”, “Estonian Museum of Natural History”)

(“et”, “Eesti Loodusmuuseum”)

Schema “Estonian Museum of Natural History”@en

“Eesti Loodusmuuseum”@et

Use/Exploitation in

the Europeana.eu

portal

Simple search, Full search result display (Publisher

Line)

Table 30: ESE-CHO Publisher element overview.

4.3.6. Type

The nature or genre of the digital object or the original physical object in the case of a

digitisation. This should be used to record the values given in the source data which, ideally,

will have been taken from a controlled vocabulary. Typically this element contains values

such as photograph, painting and sculpture. A controlled DC Type vocabulary is provided

(available at http://dublincore.org/documents/dcmi-type-vocabulary/).

 type

Namespace naturaleurope

Datatype LangString or VocabularyTerm

Method of input Manual, preferably the values should be taken

from the provided vocabulary

Example (gui) (“en”, “subfossil”)

(“et”, “subfossiil”)

or

(“Image”)

Schema “subfossil” @en

“subfossiil”@et

or

“Image”,

“dcmitype:http://purl.org/dc/dcmitype/Image”

http://dublincore.org/documents/dcmi-type-vocabulary/

84 Chapter 4

Use/Exploitation in

the Europeana.eu

portal

Simple search, Full search result display (Type

Line)

Table 31: ESE-CHO Type element overview.

4.3.7. Coverage

Coverage can be used for either spatial or temporal aspects of the object being described.

Values will typically include either a spatial location (place name or geographic co-ordinates)

or a temporal period (a date range or period label). If analysis of the data shows that it

contains only spatial or only temporal data then please map to either the Spatial Coverage

or the Temporal Coverage element refinements described next: the greater precision will

allow the addition of place and time-based functionality. If values in the source data are

mixed or unknown then this more generic Coverage element should be chosen for the

mapping.

 coverage

Namespace dc

Datatype LangString

Method of input Manual

Example (gui) (“en”, “Boston, MA”)

(“en”, “1995-1996”)

Schema “Boston, MA”@en

“1995-1996”@en

Use/Exploitation

in the

Europeana.eu

portal

Simple search, Full search result display (Coverage

Line)

Table 32: ESE-CHO Coverage element overview.

4.3.8. Temporal Coverage

Use this element for the temporal characteristics of the digital object or the original physical

object in the case of a digitisation i.e. what the resource is about or depicts in terms of time.

The ESE-CHO Application Profile 85

This is in contrast to element Date which relates to an event in the life of the object itself

(e.g. the creation or the art work or publication of the book.). Values in this element will

appear in the Time period line of a full result display in the Europeana.eu portal.

 temporal

Namespace dcterms

Datatype LangString

Method of input Manual

Example (gui) (“en”, “Pleistocene – Holocene”)

Schema “Pleistocene – Holocene”@en

Use/Exploitation in

the Europeana.eu

portal

Simple search, Advanced search, Full search result

display (Time period Line)

Table 33: ESE-CHO Temporal Coverage element overview.

4.3.9. Is Part Of

This element should be used to identify a related resource in which the described resource is

physically or logically included. More particularly, use this for the name of the collection of

which the digital object is part.

 isPartOf

Namespace dcterms

Datatype LangString

Method of input Manual

Example (gui) (“en”, “Collection of fish images by Tiit Hunt”)

(“et”, “Tiit Hunt'i kalafotod”)

Schema “Collection of fish images by Tiit Hunt”@en

“Tiit Hunt'i kalafotod”@et

Use/Exploitation in

the Europeana.eu

Simple search, Full search result display (Relation

Line)

86 Chapter 4

portal

Table 34: ESE-CHO Is Part Of element overview.

4.3.10. Source

This element can be used for several different types of sources that are related to the object

(such as reference sources). The name of the content holder should not be recorded here as

a new element.

 source

Namespace dc

Datatype LangString

Method of input manual

Example (gui) (“en”, “BAM portal”)

(“en”, “Security Magazine pp 3-12”)

Schema “BAM portal”@en

“Security Magazine pp 3-12”@en

Use/Exploitation in

the Europeana.eu

portal

Simple search, Full search result display (Source)

Table 35: ESE-CHO Source element overview.

4.4. Optional elements for a CH Object

4.4.1. Provenance

This element is to record a statement of any changes in ownership and custody of the

resource since its creation that are significant for its authenticity, integrity and

interpretation. This may include a description of any changes successive custodians made to

the resource. For Europeana this relates particularly to the ownership and custody of the

original analog or born-digital object.

The ESE-CHO Application Profile 87

 provenance

Namespace dcterms

Datatype LangString

Method of

input

Manual

Example (gui) (“en”, “Donated by the National Library in 1965”)

schema “Donated by the National Library in 1965”@en

Table 36: ESE-CHO Provenance element overview.

4.4.2. Format

This element can include the file format, physical medium and dimensions of the original

physical object or the digital object. It is recommended to use this element for the file

format of digitised or born-digital object. For digital objects it is recommended to use the

provided Internet media types (originally called MIME types) based on IANA registration.

The refinements of Extent and Medium can be used as appropriate for the more specific

information. In case that a user publishes an object using our application then (whenever

possible) this element is automatically generated during the publishing process.

 format

Namespace dc

Datatype String

Method of

input

Automatic whenever possible. User always has

the option to override. For harvested material the

information is simply imported or if not given

tried to be automatically detected.

Example (gui) (“image/jpeg”)

schema “image/jpeg”

Table 37: ESE-CHO Format element overview.

88 Chapter 4

4.4.3. Extent

Use to record the size or duration of the original physical or digital object. This includes

measurements of physical objects that have been digitised. To ensure a meaningful display

for the user, please indicate the units of measurement in the value. In case that a user

publishes an object using our application then (whenever possible) this element is

automatically generated during the publishing process.

 extent

Namespace dcterms

Datatype LangString

Method of

input

Automatic whenever possible. User always has

the option to override. For harvested material the

information is simply imported or if not given

tried to be automatically detected.

Example (gui) ('en”, “1280 x 827 pixels”)

(“en”, “42.4 cm x 68 cm”)

Schema “1280 x 827 pixels”@en

“42.4 cm x 68 cm”@en

Table 38: ESE-CHO Extent element overview.

4.4.4. Medium

The material or physical carrier of the resource. This refers to the medium of the digital or

original physical object such as paper, wood or ivory.

 medium

Namespace dcterms

Datatype LangString

Method of

input

Manual

Example (gui) (“en”, “metal”)

Schema “metal”@en

Table 39: ESE-CHO Medium element overview.

The ESE-CHO Application Profile 89

4.4.5. Identifier

This element can be used for an identifier of the digital object or the original physical object

in the case of a digitisation.

 identifier

Namespace dc

Datatype String

Method of

input

Manual

Example (gui) (“http://geokogud.info/elm/specimen_image

/g297/g297-13_b.jpg”)

(“urn:isbn:9780387097466”)

Schema “http://geokogud.info/elm/specimen_image/

g297/g297-13_b.jpg”

“urn:isbn:9780387097466”

Table 40: ESE-CHO Identifier element overview.

4.4.6. Rights

This element contains information about intellectual Property Rights, access rights or licence

arrangements for the digital object (digitized or born digital). It’s value can be any additional

information about intellectual property rights, access rights or license arrangements for the

digital object that has not been captured in Licence element. In any case the elements Rights

and Licence should not contain the same value.

 rights

Namespace dc

Datatype LangString

Method of

input

Manual

Example (gui) (“en”, “Estonian Museum of Natural History”)

(“et”, “Eesti Loodusmuuseum”)

http://geokogud.info/elm/specimen_image/g297/g297-13_b.jpg
http://geokogud.info/elm/specimen_image/g297/g297-13_b.jpg
http://geokogud.info/elm/specimen_image/g297/g297-13_b.jpg
http://geokogud.info/elm/specimen_image/g297/g297-13_b.jpg

90 Chapter 4

Schema “Estonian Museum of Natural History”@en

“Eesti Loodusmuuseum”@et

Table 41: ESE-CHO Rights element overview.

4.4.7. Table Of Contents

Use for a list of the sub-units of the digital object or the original physical object in the case of

a digitisation.

 tableOfContents

Namespace dcterms

Datatype String

Method of

input

Manual

Example (gui) (“Chapter 1. Introduction, Chapter 2. History”)

Schema “Chapter 1. Introduction, Chapter 2. History”

Table 42: ESE-CHO Table Of Contents element overview.

4.4.8. Relation

This element should be used for information about resources that are related to the digital

object or the original physical object in the case of a digitisation. It has been used for a wide

range of relationships and it is recommended to use one of the several more specific

relationship refinements (follow below) where appropriate. Ideally this value should be a

URI but it is recognised that practice varies in this respect.

 relation

Namespace dc

Datatype String

Method of

input

Manual

The ESE-CHO Application Profile 91

Example (gui) (“maps.crace.1/33”)

note: This is the shelf mark for a map held in the British

Library's Grace Collection

Schema “maps.crace.1/33”

Table 43: ESE-CHO Relation element overview.

4.4.9. Conforms To

The names of standards that the digital object (digitized or born digital) complies with and

which are useful for the use of the object.

 conformsTo

Namespace dcterms

Datatype String

Method of

input

Manual

Example (gui) (“W3C WCAG 2.0”)

note: For an HTML document that conforms to web

content accessibility guidelines

Schema “W3C WCAG 2.0”

Table 44: ESE-CHO Conforms To element overview.

4.4.10. Has Format

Use this element to identify another resource that is substantially the same as the digital

object being described by the metadata but exists in a different format. Note that the

purpose of this element is to give the identifier of the other resource in a different format,

not to state the format of the object being described.

 hasFormat

Namespace dcterms

Datatype String

92 Chapter 4

Method of

input

Manual

Example (gui) (“http://upload.wikimedia.org/wikipedia/en/f/f3/Europ

eana_logo.png”)

note: A link to another image format of the tiff image

file being described

Schema “http://upload.wikimedia.org/wikipedia/en/f/f3/Europ

eana_logo.png”

Table 45: ESE-CHO Has Format element overview.

4.4.11. Is Format Of

Opposite of Has Format. Use this element to identify a related resource that is substantially

the same as the digital object but in a different format. Use when there are alternative

formats and it is not clear which preceded the other.

 isFormatOf

Namespace dcterms

Datatype String

Method of

input

Manual

Example (gui) (“Europeana_logo.tiff”)

note: Where the resource being described is a png

image file

Schema “Europeana_logo.tiff”

Table 46: ESE-CHO Is Format Of element overview.

4.4.12. Has Version

A related object that is a version, edition, or adaptation of the described object. Changes in

version imply substantive changes in content rather than differences in format.

The ESE-CHO Application Profile 93

 hasVersion

Namespace dcterms

Datatype LangString

Method of

input

Manual

Example (gui) (“en”, “The Sorcerer's Apprentice”)

note: For the translation by Edwin Zeydel of Goethe's

poem Der Zauberlehrling, where the metadata record is

describing the original

Schema “The Sorcerer's Apprentice”@en

Table 47: ESE-CHO Has Version element overview.

4.4.13. Is Version Of

(The opposite of Has Version), a related object of which the described object is a version,

edition, or adaptation. Changes in version imply substantive changes in content rather than

differences in format.

 isVersionOf

Namespace dcterms

Datatype langString

Method of

input

Manual

Example (gui) (“en”, “ESE Version 0.5”)

Schema “ESE Version 0.5”@en

Table 48: ESE-CHO Is Version Of element overview.

4.4.14. Has Part

A related object that is included either physically or logically in the described object.

94 Chapter 4

 hasPart

Namespace dcterms

Datatype String

Method of

input

Manual

Example (gui) (“Maps.added.22231”)

note: The identifier for another map which is part of this

one that is being described

Schema “Maps.added.22231”

Table 49: ESE-CHO Has Part element overview.

4.4.15. Is Referenced By

A related object that references, cites, or otherwise points to the described object.

 isReferencedBy

Namespace dcterms

Datatype LangString

Method of

input

Manual

Example (gui) (“en”, “Till, Nicholas (1994) Mozart and the

Enlightenment: Truth, Virtue and Beauty in Mozart’s

Operas, W. W. Norton & Company “)

Schema “Till, Nicholas (1994) Mozart and the Enlightenment:

Truth, Virtue and Beauty in Mozart’s Operas, W. W.

Norton & Company “@en

Table 50: ESE-CHO Is Referenced By element overview.

4.4.16. References

(The opposite of Is Referenced By), a related object that is referenced, cited, or otherwise

pointed to by the described object.

The ESE-CHO Application Profile 95

 references

Namespace dcterms

Datatype LangString

Method of

input

Manual

Example (gui) (“en”, “Security Magazine pp 3-12“)

Schema “Security Magazine pp 3-12“@en

Table 51: ESE-CHO References element overview.

4.4.17. Is Replaced By

A related object that supplants, displaces, or supersedes the described object.

 isReplacedBy

Namespace dcterms

Datatype String

Method of

input

Manual

Example (gui) (“http://dublincore.org/about/2009/01/05/by

laws/”)

note: Where the resource described is an older version, say

http://dublincore.org/about/2006/01/01/bylaws/

Schema “http://dublincore.org/about/2009/01/05/byl

aws/”

Table 52: ESE-CHO Is Replaced By element overview.

http://dublincore.org/about/2009/01/05/bylaws/
http://dublincore.org/about/2009/01/05/bylaws/
http://dublincore.org/about/2009/01/05/bylaws/
http://dublincore.org/about/2009/01/05/bylaws/

96 Chapter 4

4.4.18. Replaces

(The opposite of Is Replaced By), a related object that is supplanted, displaced, or

superseded by the described object.

 replaces

Namespace dcterms

Datatype LangString

Method of

input

Manual

Example (gui) (“http://dublincore.org/about/2006/01/01/by

laws/”)

note: Where the resource described is a newer version, say

http://dublincore.org/about/2009/01/05/bylaws/

Schema “http://dublincore.org/about/2006/01/01/byl

aws/”

Table 53: ESE-CHO Replaces element overview.

4.4.19. Is Required By

A related object that requires the described object to support its function, delivery or

coherence.

 isRequiredBy

Namespace dcterms

Datatype String

Method of

input

Manual

Example (gui) (“http://www.myslides.com/myslides.ppt”)

note: Where the image being described is required for

an online show

Schema “http://www.myslides.com/myslides.ppt”

Table 54: ESE-CHO Is Required By element overview.

http://dublincore.org/about/2009/01/05/bylaws/
http://dublincore.org/about/2009/01/05/bylaws/
http://dublincore.org/about/2009/01/05/bylaws/
http://dublincore.org/about/2009/01/05/bylaws/

The ESE-CHO Application Profile 97

4.4.20. Requires

(The opposite of Is Required By), a related object that is required by the described object to

support its function, delivery or coherence.

 requires

Namespace dcterms

Datatype String

Method of

input

Manual

Example (gui) (“http://ads.ahds.ac.uk/project/userinfo/css/oldbrowse

r.css”)

note: Where the resource described is an HTML file at

http://ads.ahds.ac.uk/project/userinfo/digitalTextArchi

ving.html

Schema “http://ads.ahds.ac.uk/project/userinfo/css/oldbrowser

.css”

Table 55: ESE-CHO Requires element overview.

4.5. Elements supplied by Europeana for a CH Object

The following elements are generated by Europeana during the ingestion phase. They are

provided below only for completeness purposes:

4.5.1.Europeana language

This element is used to support the language facet in the Europeana.eu portal. As part of the

ingest process the language(s) stated in element Language (if any) will be normalised and

entered in this element.

4.5.2.Europeana URI

This element supports the internal functioning of the Europeana system. The value in this

element is a unique identifier for each object record in the system. It is generated

algorithmically based on an element in the source metadata that provides a unique

identifier for the object.

98 Chapter 4

4.5.3.Europeana year

This element is used to support the Timeline and the Date facet in the Europeana.eu portal.

The value in this element is a four digit year (YYYY) from the Gregorian calendar. It is

generated during the normalisation process from the value provided in the Date element (or

one of the date refinements as appropriate) by the provider. The value supplied in the

element Date may not be in this standard form but the normalisation process will attempt to

identify a four digit year from the value supplied. Ideally therefore the value in the element

Date should contain a year in the form YYYY. Objects where no europeana:year value can be

generated will not appear in the Timeline or Date facet.

4.6. Elements supplied for a collection of CH Objects

This category provides metadata information for logical groupings of contributed CH objects

within a museum.

4.6.1. Title

A mandatory element that keeps the title of the collection.

 title

Namespace dc

Datatype LangString

Method of

input

Manual

Example (gui) (“en”, “TNHM mineral collection images”)

(“et”, “Mineraalid Eesti Loodusmuuseumi kogudest”)

Schema “TNHM mineral collection images”@en

“Mineraalid Eesti Loodusmuuseumi kogudest”@et

Table 56: ESE-CHO Collection Title element overview.

4.6.2. Creator

A mandatory element that refers to the name of the creator or creators of the collection.

Map each name to a separate, repeated creator element if possible. Ideally choose a

preferred form of name from an authority source. If you do not use an authority source, use

a consistent form of the name e.g. Shakespeare, William.

The ESE-CHO Application Profile 99

 creator

Namespace dc

Datatype LangString

Method of

input

Manual

Example (gui) (“Rutt Hints”)

Schema “Rutt Hints”

Table 57: ESE-CHO Collection Creator element overview.

4.6.3. Subject

This mandatory element refers to the subject(s) of the collection. This can include topics,

people and places but consider using the spatial and temporal elements for places and time

periods if the source data allows. Best practice is to use a separate instance of the element

for individual subject terms.

 subject

Namespace dc

Datatype LangString

Method of

input

Manual

Example (gui) (“en”, “Earth science”)

(”et”, “ Geoteadused”)

(“en”, “Geology”)

(“et”, “ Geoloogia”)

(“en”, “Mineralogy”)

(“et”, “Mineraloogia”)

Schema “Earth science”@en

“ Geoteadused”@et

“Geology”@en

100 Chapter 4

 “Geoloogia”@et

“Mineralogy”@en

“Mineraloogia”@et

Table 58: ESE-CHO Collection Subject element overview.

4.6.4. Description

A prose description of the collection, elaborating on the information in the metadata. This is

an optional data element.

 description

Namespace dc

Datatype LangString

Method of

input

Manual

Example (gui) (“en”, “ geological Collections of Estonian Museum of

Natural History”)

(”et”, “Mineraalide pilte Eesti Loodusmuuseumi

geoloogilistest kogudest”)

(“et”, “Mineraloogia”)

Schema “geological Collections of Estonian Museum of Natural

History”@en

“Mineraalide pilte Eesti Loodusmuuseumi

geoloogilistest kogudest”@et

“Mineraloogia”@et

Table 59: ESE-CHO Collection Description element overview.

4.6.5. Contributor

This is an optional data element that keeps the name of contributors to the collection.

Names can include those of people, organisations or services. Map each name to a separate

repeated contributor element if possible. Ideally choose a preferred form of name from an

authority source. If you do not use an authority source, use a consistent form of the name

e.g. Shakespeare, William. For each contributor the kind (role) of contribution has to be

provided. A number of roles are provided as vocabulary terms in the MARC Code List for

Relators (http://id.loc.gov/vocabulary/relators.html).

http://id.loc.gov/vocabulary/relators.html

The ESE-CHO Application Profile 101

 contributor

Namespace naturaleurope

Datatype LangString

Method of

input

Manual

Example (gui) (“Friedrich Schmidt (collector)”)

(“Tiit Hunt (photographer)”)

Schema
“Friedrich Schmidt”, “Collector”,

“roles:http://id.loc.gov/vocabulary/relators/col”

“Tiit Hunt”, “photographer”,

“roles:http://id.loc.gov/vocabulary/relators/pht”

Table 60: ESE-CHO Collection Contributor element overview.

4.6.6. Type

This is an optional data element that keeps the type of the collection as recorded by the

content holder. Type includes terms describing general categories, functions, genres, or

aggregation levels for content. This should be used to record the values given in the source

data which, ideally, will have been taken from a controlled vocabulary. A controlled DC Type

vocabulary is provided (available at http://dublincore.org/documents/dcmi-type-

vocabulary/).

 type

Namespace naturaleurope

Datatype LangString or VocabularyTerm

Method of

input

Manual, preferably the values should be taken

from the provided vocabulary.

Example (gui) (“en”, “subfossil”)

(“et”, “subfossiil”)

or

(“Image”)

Schema “subfossil” @en

http://dublincore.org/documents/dcmi-type-vocabulary/
http://dublincore.org/documents/dcmi-type-vocabulary/

102 Chapter 4

“subfossiil”@et

or

“Image”,

“dcmitype:http://purl.org/dc/dcmitype/Image”

Table 61: ESE-CHO Collection Type element overview.

4.6.7. Identifier

This optional element can be used for an identifier of the collection.

 identifier

Namespace dc

Datatype String

Method of

input

Manual

Example (gui) (“http://nla.gov.au/nla.pic-an7678346-1-v-cd”)

Schema “http://nla.gov.au/nla.pic-an7678346-1-v-cd”

Table 62: ESE-CHO Collection Identifier element overview.

4.6.8. Coverage

Coverage is an optional element that can be used for either spatial or temporal aspects of

the collection. Values will typically include either a spatial location (place name or

geographic co-ordinates) or a temporal period (a date range or period label).

 coverage

Namespace dc

Datatype LangString

Method of

input

Manual

The ESE-CHO Application Profile 103

Example (gui) (“en”, “Boston, MA”)

(“en”, “1995-1996”)

Schema “Boston, MA”@en

“1995-1996”@en

Table 63: ESE-CHO Collection Coverage element overview.

Chapter 5

System Architecture

EuroMuse is an application used by museum curators for publishing CHOs, describing CHOs

and CHO Collections, as well as for managing their metadata. This chapter describes the

complete system’s architecture, identifies its basic components and provides an in depth

analysis of the internal functionality. Built as a web application, the system adopts the

Google Web Toolkit (GWT) [19] framework which facilitates the development of web

applications as desktop applications, performing business logic operations on server side, as

well as on client side. The Client Side logic operates within the web browser running on a

user’s local computer, while the Server Side logic operates on the web server hosting the

application.

For the development of the application we adopted several design patterns, which are

presented in detail in the following sections. Model-View-Presenter and Observer were used

on the client side, and a multi-tier architecture was implemented on the server side. Figure 9

displays the overall system architecture. The analysis of the architecture has been broken

into two parts; Section 5.1 describes the Client Side architecture, and Section 5.2 describes

the Server Side architecture.

106 Chapter 5

Figure 9 : Overall system architecture, containing client-side (top) and server-side (bottom) along
with the included modules.

System Architecture 107

5.1. Client Side

The Client Side of the application is responsible for the interaction with the user. All the

actions performed by an individual using the system, are handled by the client side logic,

which undertakes the presentation of the information as well as the communication with

the server when needed. To achieve the scalability of the User Interface, and the distinction

between the components forming the client logic, a number of well-established patterns

were adopted.

The design pattern we adopted for defining the system’s client side architecture is the

Model-View-Presenter (MVP) [27] design pattern, which is described in Section 5.1.1. Along

with MVP, we implemented the Observer pattern using an Event Bus (Section 5.1.2), and the

Mediator pattern using the Application Manager (Section 5.1.3).

5.1.1. Model-View-Presenter (MVP)

Most screens in a Web application contain controls that allow the users to review

application domain data. A user can modify the data and submit the changes. The client logic

retrieves the domain data from the server, handles user events, alters other controls on the

page in response to the events, and submits the changed domain data back to the server.

Including the logic behind these functions in the Web page makes the code complex, difficult

to maintain, and hard to test. In addition, it is difficult to share code between Web pages

that require the same behavior.

This pushes the need for an architectural design that:

 Maximizes the code that can be tested with automation. (Web pages containing

HTML elements are hard to test.)

 Code sharing between pages that require the same behavior.

 Separation of Business logic from User Interface logic to make the code easier to

understand and maintain.

These requirements drove the creation of the Model-View-Presenter (MVP) Design Pattern

[27]. MVP introduces the separation of the responsibilities for the visual display and the

event handling behavior into different entities named, respectively, the view and the

presenter.

MVP was created mainly for the development of desktop applications, due to the difficulty

to write and debug complex business logic code in JavaScript (used in web applications for

programming the client’s browser), but the usage of GWT allowed us to write highly

complex logic code and thus implement the MVP on the client side of our application.

The components in the system architecture that compose the MVP pattern are: a) the

Model, b) the View, c) the Presenter and d) the Display Interface. Figure 10 presents the

108 Chapter 5

interaction between these components. The View is responsible for the user interface. It

implements the Display Interface (green circle) whose members are technology striped UI

elements of the view. The Presenter controls the behavior of the view using the Display

Interface. The user interacts with the view and all the user actions generate a User Interface

event. When such an event occurs on the view, it is forwarded to the presenter whose

responsibility is to handle the event. Presenter is manipulating view by talking to interface

representation of the view and should never reference directly view members (UI controls).

For his logic operations the Presenter uses the Model, which represents the business

objects.

Figure 10: Model-View-Presenter (MVP) Design Pattern.

Apart from MVP, a similar pattern used in many web applications is Model-View-Controller

(MVC) [28]. Figure 11 presents the diagram of this pattern which is composed of the View,

the Controller and the Model. The View in this pattern is also the component responsible for

the presentation and interaction with the user. Each action of the user produces an event

which is handled by the Controller, who converts the event into an appropriate user action

understandable for the model. The Controller notifies the Model of this action, possibly

resulting in a change in the model’s state. Subsequently, the view queries the model and

generates the appropriate interface.

Figure 11: Model-View-Controller (MVC) Design Pattern.

The two patterns are very similar, but yet a lot of differences derive after careful

observation. MVC is mostly used in web applications where it dominates over MVP. On the

other side, MVP has many advantages over MVC in desktop applications. Although

EuroMuse is a web application, the evolution of the Web has filled the gap between desktop

and web applications and introduced the Rich Internet Applications (RIAs). RIAs are web

applications with many characteristics of desktop applications. EuroMuse is developed as a

RIA and for this reason we chose to follow the MVP pattern.

System Architecture 109

The advantages of MVP over MVC in desktop/RIA applications are:

 In MVP the View is completely unaware of the Model and the Presenter is the one

exclusively interacting/manipulating it, whereas in MVC both the View and the

Controller are aware of the Model. This makes MVP easier to maintain when the

Model undergoes modifications because only the Presenter needs to be updated.

 In MVP the communication between the View and the Presenter is done through

the Display Interface, thus allowing the independent development of the logic

(Presenter) and the user interface (View) by the developers and the designers

respectively, after the Display Interface has been defined.

 The usage of the Display Interface in MVP facilitates the unit testing of the View and

the Presenter, by allowing the fast creation of mock implementations.

5.1.1.1. Model

The Model encompasses all business objects used by the system. These include the CHOs,

the Metadata concerning the CHOs, as well as the metadata concerning the CHO Collections

and the details of the users in the system. Due to the fact that the Persistency Management

Module (see Section 5.2.2.1) is built as an Open Archival Information System (OAIS) [29],

there is a need for organizing the model into Information Packages.

An Information Package (IP) refers to the content information and associated preservation

description information, which is needed to aid in the preservation of the content

information. IPs are further split into Dissemination Information Packages (DIPs) and

Submission Information Packages (SIPs). Dissemination Information Package refers to

Information Packages that are to be exported (disseminated) by an Open Archival

Information System, whereas Submission Information Package refers to an Information

Package submitted to an OAIS according to the OAIS Reference Model.

When the system needs to present information about a business object, the server side

services are used to transfer the DIPs to the client side. When an update on the Model

needs to take place, the client side sends the SIPs with the new information to the server

side.

5.1.1.2. View

In the MVP pattern, the view is responsible for all the information presentation (colors,

borders, UI layout) and the management of the controls on a page or part of a page. All

HTML and the StyleSheets are handled by views.

In our system, each view is a composite widget, aggregating a set of simple widgets. Simple

widgets refer to the simple HTML elements (e.g. tables, labels, buttons, textboxes, forms,

images etc.) The views dynamically create and manipulate these widgets, according to the

system actions, or use them to capture user actions. Moreover, views have no notion of the

model. That is to say a view doesn't know what it is displaying; it simply knows that it has,

for example, 3 labels, 3 textboxes, and 2 buttons that are organized in a vertical fashion.

110 Chapter 5

Each view is coupled with one presenter. The presenter instantiates the view, controls it

throughout its lifecycle and destroys it when the time comes. During instantiation, the

presenter instructs the view where to “sit” on the screen. This way a single web page can be

composed by multiple presenters manipulations various views.

When the user interacts with the web page, a browser event takes place. This event can be

traced using GWT mechanisms, and handled whichever way needed. The important events

are handled by the views, or delegated to the corresponding presenters, if the presenter has

asked to be informed about the specific type of event. In turn, the presenter might instruct

the view to update some of its visual parts, based on the event. For example, if the user

clicks the delete button next to an object in a list, the view delegated the click event to the

presenter. The presenter informs the server to delete the object, and then instructs the view

to remove the object from the list.

5.1.1.3. Presenter

A Presenter contains all of the client side logic of our application. It is the key in MVP design

pattern, for it is a bridge between the Model and the View. As a general rule, for every View

there is a presenter that instantiates and manipulates it, but there might be cases where

one presenter needs to control multiple views. The presenter has handlers for the events

that take place in his view/s or in the application in general (see Event Bus in Section 5.1.2).

The lifecycle of a presenter is composed of four phases.

 Initialization phase: The presenter initializes its corresponding view/s, and instructs

them where to deploy. In addition, the presenter registers handlers to the crucial UI

events and application events. When the initialization and handler registration

finish, the presenter goes into the sleeping phase.

 Sleeping phase: This is the phase where the presenter does nothing but wait for a

UI event from the view, or an application event.

 Operating phase: When an already registered event is raised, the presenter wakes

up and handles it (using its UI/App Event Handlers) by contacting the server,

updating the view or even raising new events.

 Termination phase: When the user leaves the application, the presenter goes into

the termination phase, before being destroyed. During this phase, the presenter

might need to inform the server for the termination.

The communication of the presenter with the services residing on the server, takes place

through the Application Manager who acts as a Mediator. More on this subject can be found

in Section 5.1.3.

As already stated, the presenter has no knowledge of any widget-based code inside the view

and all the interaction with the view is done through the Display Interface.

5.1.1.4. Display Interface

In an MVP architecture, the Presenter and its corresponding View must be lightly coupled, to

facilitate unit testing. This goal is achieved by utilizing Display Interfaces between the

System Architecture 111

Presenters and the Views. Each View implements a Display Interface, which defines all the

methods needed by the presenter for the manipulation of his view. In turn, the presenter

has a reference to the view interface instead on the concrete implementation of the view.

By doing this, the real view can be easily replaced with a mock implementation to run tests.

In various cases, it is crucial for a view to notify the presenter. This is done through the

Presenter Interface contained inside the Display Interface, which is implemented by the

presenters.

5.1.2. Event Bus

The use of MVP allows the development of multiple presenters on the same screen of the

application, providing better control over the different parts of the interface. This creates

the need for some kind of interaction between them. The easiest way to achieve this is by

letting each presenter know about the existence as well as the structure of the other

presenters. The specific implementation creates highly coupled presenters, which makes

unit testing almost impossible.

To avoid the coupling between the presenters, we decided to use the Observer pattern

(subset of the Publish/Subscribe pattern) with the usage of an Event Bus. The Event Bus is a

mechanism for a) passing events and b) registering to be notified of some subset of these

events. Respectively, presenters can register to be notified when some events occur (App

Event Handlers), or fire events on the Event Bus to notify other presenters.

Using this pattern, the presenters can be developed completely uncoupled by processing all

the communication between them through the Event Bus. This makes the presenters

completely unaware of each other, which eases unit testing. The level of coupling between

the presenters can vary depending on the needs of the application, and is up to the

developers to decide.

It's important to keep in mind that not all events are to be placed on the Event Bus. Blindly

dumping all of the possible events on the Event Bus can lead to a chatty application that can

get bogged down in event handling. Specifically, the UI events handled by the presenters

should not be forwarded to the Event Bus because they contain a lot of unneeded data, but

instead another Event should be instantiated and fired, containing just the information

needed.

As an example, when the user clicks on a button contained in a view, if no other presenters

need to be informed of the click, the presenter should not pass the event to the Event Bus as

it will not have any registered handlers. Moreover, when other presenters need to be

informed (e.g. for the click on the “Save” button) the presenter handling the UI event should

not pass it as it is to the Event Bus because it contains a lot of data about the coordinates of

the mouse, reference to the button etc. which have no use to the other presenters listening

to the event. Instead, the presenter should instantiate a new event with just the needed

data and pass it to the Event Bus.

112 Chapter 5

App-wide events are really the only events that we passed around on the Event Bus. The app

is uninterested in events such as "the user clicked enter" or "an RPC is about to be made".

Instead, we pass around events such as a record being updated, the user selects a record to

view its description, or an RPC that deleted a record has successfully returned from the

server.

5.1.3. Application Manager

The Application Manager module has been implemented as a Mediator of the Client Side,

residing between the Presenters and the Server Side, making calls to the services exposed in

the Service Layer, and notifying the Presenters for the service response. In addition, the

Application Manager holds some static data needed throughout the application (e.g. the

user details, etc.).

When a presenter needs to communicate with the Server Side it places an App event

(Application Event) to Event Bus. The Application Manager handles this event using his App

Event Handlers and communicates with the Server Side via RPC Async Interface. When this

service call has been successfully executed on the server and the response is received (by

the Service Callback Handlers), the Application Manager places an App event on the event

bus to inform the presenter of the outcome.

The Application Manager has also been developed with another important aspect in mind,

client side caching. Although the application has no cache on the client side yet, the

architecture allows for a cache to be created next to the Application Manager, which he can

access before requesting data from the server. This can drastically improve the speed of the

system.

5.1.4. Multilinguality support

Developing applications that can be used in different countries, with different languages,

often requires applying specific techniques. The usage of GWT though, simplifies dealing

with internationalization matters.

The multilinguality support module uses the GWT approach for internationalization matters.

Views, Presenters and Application Manager use this module in order to take the appropriate

data for each language supported and display it to the user interface. GWT provides i18n

support with its Constants interface allowing you to work with string literals in different

languages, and with the Messages interface, which adds singular/plural considerations.

For the development of our system, we implemented the static string internationalization

technique. Static string internationalization is the most efficient way to localize our

application for different locales in terms of runtime performance. Also, our application has

System Architecture 113

only constants and parameterized messages in its user interface, so this technique could be

the best choice.

 This approach is called "static" because it refers to creating tags that are matched up with

human readable strings at compile time. At compile time, mappings between tags and

strings are created for all languages defined in the module. The module startup sequence

maps the appropriate implementation based on the locale setting using deferred binding.

For more detail in GWT’s i18n Support, see Section 2.10.4.

5.1.5. RPC Async Interface

The RPC mechanism handles the communication between the client-side and the server-

side. It uses GWT’s mechanisms, which allow fast deployment of remote services,

eliminating the need to create Java Servlets. For more information, see Section 2.10.3.

5.2. Server Side

The Server Side part of our application follows a multi-layered Architectural pattern

consisting of three basic layers: Service Layer, Business Logic Layer and Data Layer.

The advantages of this approach include the increased system maintainability, reusability of

the system components, scalability, robustness, and security. Moreover, the adoption of a

multitier architecture and the provision of well-defined interfaces for each layer, allows any

of the layers to be upgraded or replaced independently (with minimum effort) as

requirements or technology change.

5.2.1. Service Layer

The Service Layer controls the communication between the client logic and the server logic,

by exposing a set of services (operations) to the client side components. These services

actually comprise the middleware concealing the application’s business logic from the client.

The basic system services are listed below:

 CRUD Service: Facilitates the creation, retrieval, update and deletion of a CHO, a
CHO Metadata record, a CHO Collection, a user etc.

 CHO Import Services: Supports the importing of record-based xml metadata in
order to be converted to SIPs using the SIP Transformation Module, as well as
the import of media files which are published and the metadata information
that they hold is extracted and used for the description of the new CHO. The
SIPs are then transferred to the Persistency Management Module for storage
into the CHO Repository.

 Vocabulary Access Service: Responsible for the access to the taxonomic terms
and vocabulary.

114 Chapter 5

 Concurrency Service: Provides the basic methods for
acquiring/releasing/refreshing locks on a CHO Metadata Record or a CHO
Collection.

5.2.2. Business Logic Layer

The Business Logic Layer, also known as Domain Layer, contains the business logic of the

application and separates it from the Data Layer and the Service Layer, which is used by the

Client Side’s modules. It consists of four basic modules (analyzed in detail at the end of this

section):

 Persistency Management: Manages operations requiring the
submission/fetching of information packages to/from the CHO Repository.

 SIP Transformation: Used for the transformation of record-based XML metadata
to SIPs, using mappings produced from the Europeana SIP Creator Tool [30].

 Multimedia Manipulation: Used during the importing of media objects. Extracts
metadata from files in supported formats, and creates CHO metadata records
with this information.

 Vocabulary Access Management: Provides access to indexed vocabularies or
authority files residing on a Vocabulary Server. Such vocabularies may refer to
the taxonomic classification of a CHO, to publicly sourced authority files of
persons, places, etc.

 Concurrency Management: Applies a pessimistic locking strategy to CHO
Metadata or CHO Collection Metadata records in order to overcome problems
related to the concurrent editing by multiple users.

Since the modules of the Business Logic Layer contain the main logic residing on the Server

Side, they are described below in further detail.

5.2.2.1. Persistency Management Module

The Persistency Management Module is responsible for the communication between the

application and the CHO Repository. Whenever a system service needs to perform an

update on the repository, the module compiles the input information into SIPs and uses the

CHO Repository API to initiate the ingest phase. Accordingly, the module retrieves DIP

packages from the CHO Repository and promotes them to the service layer when needed.

The Client Side logic interacts with this module through the service layer when a user

reviews/updates a CHO/CHO Collection, etc.

5.2.2.2. SIP Transformation Module

This module provides an Application Programming Interface (API) containing methods used

for the transformation of record-based XML metadata to SIPs, using mappings compliant

System Architecture 115

with the format produced and used by the Europeana SIP Creator Tool. It actually serves the

requirement of metadata unification, by supporting the migration of already existing NHM

legacy metadata to SIP compliant records that will be transferred for storage, in a later step,

to the CHO Repository. The Client Side logic interacts with this module through the service

layer when a user imports.

5.2.2.3. Multimedia Manipulation Module

The Multimedia Manipulation Module is responsible for the extraction of the metadata

information embedded in media files. The CHO Import Services uses this module during the

import of Media Objects, in order to automatically enrich the metadata description of the

new CHOs with everything that comes along the file.

5.2.2.4. Vocabulary Access Management Module

The Vocabulary Access Management Module is responsible for the indexing and accessing of

vocabularies or authority files residing on a Vocabulary Server. Such vocabularies may refer

to the taxonomic classification of a CHO, to publicly sourced authority files of persons,

places, etc.

The first release of EuroMuse uses the Catalogue of life. The Catalogue of Life [31], started in

June 2001 by Species 2000 and Integrated Taxonomic Information System (ITIS), is planned

to become a comprehensive catalogue of all known species of organisms on Earth.

The present Catalogue is compiled with sectors provided by 99 taxonomic databases from

around the world. Many of these contain taxonomic data and opinions from extensive

networks of specialists, so that the complete work contains contributions from more than

3,000 specialists from throughout the taxonomic profession. Species 2000 and ITIS teams

peer review databases, select appropriate sectors and integrate the sectors into a single

coherent catalogue with a single hierarchical classification. It is planned to introduce

alternative taxonomic treatments and alternative classifications, but an important feature is

that for those users who wish to use it, a single preferred catalogue, based on peer reviews,

will continue to be provided.

Biological classification

Biological classification, or scientific classification in biology, is a method by which biologists

group and categorize organisms by biological type, such as genus or species. Biological

classification is part of scientific taxonomy.

In biological classification, rank is the level (the relative position) in a taxonomic hierarchy.

Ranks are assigned based on subjective dissimilarity, and do not fully reflect the gradational

nature of variation within nature. In most cases, higher taxonomic groupings arise further

116 Chapter 5

back in time: not because the rate of diversification was higher in the past, but because each

subsequent diversification event results in an increase of diversity and thus increases the

taxonomic rank assigned by present-day taxonomists.

Figure 12: The hierarchy of biological classification's eight major taxonomic ranks.

The Catalogue of life website provides web services for external usage of their taxonomy.

They also provide the full database of their system, which is regularly released for free

download. Using D2R Server [32], the relational database was published in RDF format, with

SPARQL support. The RDF data format was designed to comply with the Simple Knowledge

Organization System (SKOS) vocabulary. An example of the published data can be seen in

Figure 13.

The taxonomy expressed in SKOS vocabulary format facilitates the semantic linkage of

museum objects to the catalogue of life taxonomic classification nodes. This alone provides

effective mechanisms for searching similar objects not only in the context of a single

museum, but in a global scope. The SKOS data will be hosted in the central Natural Europe

federation node in order to provide centralized access to all instances of EuroMuse.

System Architecture 117

Figure 13: SKOS example.

Besides the SKOS representation, the taxonomy has also been indexed with the Solr search

platform, in order to provide faster searching of terms inside the taxonomy. To achieve the

indexing of the data, the database had to undergo some transformation, and the final form

of each of the species includes the names of all ranks in higher order inside the tree.

Example 5.1: XML example of a simple species inside solr.

The curators using EuroMuse are provided with the ability to use the catalogue of life

taxonomy during the enrichment of the object metadata.

5.2.2.5. Concurrency Management Module

The Concurrency Management Module controls the locking/unlocking mechanisms

implemented to overcome the problems arising when two people edit the same data at the

<doc>

<str name="col_author">Linnaeus, 1758</str>

<str name="col_class">mammalia</str>

<str name="col_family">canidae</str>

<str name="col_genus">canis</str>

<str name="col_kingdom">animalia</str>

<str name="col_name">canis lupus Linnaeus, 1758</str>

<str name="col_order">carnivora</str>

<str name="col_phylum">chordata</str>

<int name="col_rank_id">8</int>

<str name="col_rank_name">species</str>

<str name="col_species">lupus</str>

<str name="id">6850415</str>

</doc>

118 Chapter 5

same time on the web. Before describing our approach, we will define the problem and the

recommended solutions.

Although the usual method of ensuring the concurrency of an application is to use the

locking mechanisms, which are pre-build in most databases, we decided to move the

mechanism higher in our application logic and thus implementing this module. This was

mostly due to the use of exist-db [32] for the storage of the data. Exist-db is one of the most

powerful native XML Databases but the transaction mechanisms provided along are yet in

very primitive state and are currently limited only to the functionality needed for internal

crash recovery.

EuroMuse provides the user with a basic interface that facilitates the creation of new

objects/collections, retrieval of existing objects/collections from the database storage,

update or deletion of the data.

These kinds of services are often described as CRUD (Create, Read, Update and Delete)

services. An example would be a user creating and then updating the information about a

CHO in the system. The CRUD operations for each action would be:

1. Create – create a new object in the system

2. Read – browsing through the collections and viewing the object

3. Update – changing the information about the object and save the updated object

4. Delete – deleting the object

In this above example, only one person is updating the object, so the object in the database

is the same between the Read and Update steps. However, one of the great advantages that

wed applications offer is that multiple users can use the system at the same time, allowing

the collaboration, but also producing some unexpected results if these operations are

uncontrolled. The common problems that occur in these cases are: the lost update problem,

the dirty read problem and the incorrect summary problem.

Lost Update Problem

The lost update is the most common problem and in order to illustrate, we will use an

example.

Consider two colleges in a museum, Joe and Bob. Using our system, Joe wants to update

some fields about the “Monachus” object. He opens his browser, logs in the system,

browses through the collections until he finds the object and makes some changes. Then Joe

decides he wants to get some coffee, before completing the changes and saving the record.

In the meantime, Bob who goes through all the objects one by one adding just an internal

identification number of the museum, reaches “Monachus”. At this point, the data displayed

to Bob doesn’t contain the changes that Joe already did. Bob updates the data, clicks the

“Save” button and moves to the next record.

System Architecture 119

Joe comes back with his coffee. At this point, Joe’s view of “Monachus” data is not

consistent with the data in the database. Bob’s change in the data is not shown in Joe’s web

browser. Most web applications operate in this manner – they only send data to the user

(Joe) when the user requests it. Now Joe makes more changes to the object and clicks the

“Save” button. This causes Bob’s update to be lost.

Bob gets back from lunch, searches for and views “Monachus” object again, and sees that

the internal identification number of the museum is missing. Bob is angered and fires off an

email to his boss telling him the new museum web application is broken and he wants to use

the old application.

As you can imagine, this is not good for the application development team or the

salespeople. Figure 14 illustrates the sequence of events leading up to the lost update.

Figure 14: The lost update problem.

120 Chapter 5

Incorrect Summary Problem

The incorrect summary problem occurs when one transaction takes a summary over the

values of all the instances of a repeated data-item, while a second transaction updates some

instances of that data-item. The resulting summary does not reflect a correct result for any

(usually needed for correctness) precedence order between the two transactions (if one is

executed before the other), but rather some random result, depending on the timing of the

updates, and whether certain update results have been included in the summary or not.

Dirty read problem

The dirty read problem occurs when transactions read a value written by a transaction that

has been later aborted. This value disappears from the database upon abort, and should not

have been read by any transaction ("dirty read"). The reading transactions end with

incorrect results.

To handle the concurrency problems, two main concurrency control mechanisms are

proposed: optimistic and pessimistic. In the next paragraphs we will try to explain in depth

these two mechanisms, and then describe the exact model we used, which is based on the

pessimistic mechanism.

Optimistic Concurrency Control

Optimistic concurrency control (OCC) is a concurrency control method that assumes that

multiple transactions can complete without affecting each other and that therefore

transactions can proceed without locking the data resources that they affect. Before

committing, each transaction verifies that no other transaction has modified its data. If the

check reveals conflicting modifications, the committing transaction rolls back.

When using OCC, a timestamp of the database record is send with the data when the user

retrieves a record. The same timestamp is send back to the server, when the user updates

the record. Then the server uses this timestamp to determine if someone else changed the

data in the database after this user last read it. If the data in the database was not changed

the user’s update succeeds, otherwise it fails and the user gets a friendly error message

along the lines of “Another user has changed the data since your last request. Please try

again”. At this point, some implementations might try to help the user merge their changes

with the current state in the database. Other implementations send the user the latest state

of the data in the database and force them to re-enter their changes. As you can imagine,

optimistic concurrency control can get very frustrating if you have a large web form and get

many “please try again” messages.

Going back to our example, if optimistic concurrency control was used, both Joe and Bob

would get the same timestamp value from the database in their initial read. Bob’s update

would succeed because the timestamp matches the current timestamp in the row for the

http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Non-blocking_algorithm

System Architecture 121

object. Besides changing the phone number, Bob’s change causes the database to update

the object’s timestamp column to match the time Bob submitted his change.

Now Joe sends his address change with the old timestamp and the application would reject

it because the timestamp in the database is not the same as the timestamp that Joe sends

with the update. The application would give Joe an error message along with the current

state of Bob’s record, including the new timestamp. Joe now has to redo all his changes to

the object.

OCC is generally used in environments with low data contention. When conflicts are rare,

transactions can complete without the expense of managing locks and without having

transactions wait for other transactions' locks to clear, leading to higher throughput than

other concurrency control methods. However, if conflicts happen often, the cost of

repeatedly restarting transactions hurts performance significantly; other concurrency

control methods have better performance under these conditions. [33]

Pessimistic Concurrency Control

Pessimistic concurrency control introduces the concept of locking data to prevent others

from attempting to modify it. A user can only change data if the user has its lock. The lock on

the data is obtained when the data is initially read and is released when the user sends their

changes to the server. If a user attempts to obtain the lock when another user already has it,

it will fail and the user would get an error message. Depending on the lock mode

(shared, exclusive, or update), other users might be able to read the data even though a lock

has been placed.

 SHARED - allow multiple users to read data, but do not allow any users to change

that data.

 EXCLUSIVE - allows only one user/connection to update a particular piece of data

(insert, update, and delete). When one user has an exclusive lock on a row or table,

no other lock of any type may be placed on it.

 UPDATE - no other user can read or update the row and ensures the current user

can later update the row.

Locks can create a number of issues. If the user goes for a coffee break, the record remains

locked, denying anyone else the ability to update the record, even if it has been untouched

by the initial requestor. With pessimistic concurrency, some things to consider are how locks

are acquired and released, if locks automatically expire after a period of time, and if a user

can forcefully unlock data locked by another user.

If the example application used pessimistic concurrency control, Joe’s request to read

object’s data from the database would give Joe the lock on “Monachus”. Later, when Bob

would read the object with the intent to modify it, Fred would be given a “This record is

currently locked. Please try again later” application error since Joe already has the lock.

Once Joe clicks the “Save” or “Cancel” button, the lock is released.

122 Chapter 5

Our approach

Concurrency control in our system is based on the pessimistic mechanism, with some

additions. The reasons that drove us to use the specific mechanism are:

2.1. The data in the system have high contention, which means there is a very high

probability that two or more users will need to edit the same record at the same time.

2.2. The users of the system are museum workers, archeologists, etc., and most of the data

they insert derives from a lot of research, so the optimistic mechanism could mean they

would have to do part of their research again in case there is a conflict and their changes are

lost.

To overcome these possible problems, we implemented a separate concurrency

component, which was then used by Concurrency Management Module. The component

has been designed to be independent of the model and the server logic.

As far as the user interface is concerned, we decided to introduce a different mode for the

update process of an object, and gave users the ability to change between view and edit

modes using a single push button. So when a user wants to view the object without making

any changes, he doesn’t have to acquire its lock. In the contrary, if he wants to edit it, when

the mode change button is pressed, the system tries to acquire a lock on the object. If the

lock succeeds, the mode is changed and the user can now edit anything he wants. When he

finishes and updates the object, the lock is released. On the contrary, if another user already

has a lock on the object, the system informs the user and the mode stays the same.

Besides the basic advantages of the pessimistic approach, there is the case someone stops

the updating process without first releasing the lock. This produces the need for automatic

lock expiration after a certain amount of time, which in turn requires the repeated refresh of

the locks from the lock owner. Hence the system has been structured to release the lock 30’’

(release threshold) after the last refresh, and the refresh of the lock takes place every 14’’

(refresh threshold). The release threshold has been chosen so that users don’t have to wait a

lot of time for a lock to be auto-released, and the refresh threshold is set so two refresh

service calls happen before the lock is released, to avoid releasing the call in the unlike event

of a missed request to the server. Moreover, if the user owns the lock, but for some reason

the browser window is refreshed or closed-reopened, the user is still able to re-acquire the

lock (although any unsaved changes will be lost) because he is still the owner (unless the

release threshold has passed and another user has acquired the lock).

Figure 15 shows the internal processing of the locks when a user tries to edit a record.

System Architecture 123

Figure 15: Concurrency Control Activity Diagram.

5.2.3. Data Layer

The Data Layer accommodates external systems that are used to store data accessed by this

tool. Such systems are the CHO Repository, and the Vocabulary Server of the Natural Europe

federal node.

5.2.3.1. CHO Repository

The CHO Repository holds all the data concerning the CHOs, CHO Collections and the Users

of the system. It was developed by Konstantinos Makris, who provided us with the CHO

Repository API which is used by the Persistency Manager to perform operations on the

repository.

5.2.3.2. Vocabulary Server

The Vocabulary Server holds all the information about the vocabulary used by the system. It

contains an instance of Lucene/Solr used by the system for the fast auto-complete features,

and all the RDF/SKOS referring to the vocabulary.

Chapter 6

GUI Design Specification

In this chapter we are going to describe the strategy that we followed for the Graphic User

Interface (GUI) design of our application. The user interface was designed very carefully in

order to accomplish both the functionality of the application and the compliance with

general design principles and guidelines.

The next subsections describe the general principles of the GUI design and the basic

application structure.

6.1. Application Structure

This section describes the Graphical User Interface (GUI) of the application, by specifying its

main graphical components. Figure 16 provides the basic application structure of the GUI

having its basic graphical areas marked with different colors.

126 Chapter 6

Figure 16 : Main GUI Specification.

Following Figure 16, the application GUI is separated in four basic graphical components

summarized below:

 Logo Bar: Contains the emblem of the application to provide instant public
recognition to the visitors, and the user interface language selection menu.

 Main Menu: Contains the basic menu items along with some information about the
user’s identity.

 Collection Browser: Facilitates the browsing through the CHO Collections and their
CHO Metadata records.

 Content Description: Presents and manipulates both CHO Metadata and CHO
Collection Metadata records. It actually forms a composite component, aggregating
other smaller subcomponents presented in details in Figure 17 and Figure 18.

The active region of the application is the Content Description part of the GUI. This part

alters according to the selected CHO/CHO Collection. If the content is CHO Collection

Metadata (Figure 17), the Content Description consists of the following subcomponents:

 Control Bar: Contains the basic controls allowing the deletion of this CHO

Collection, the saving of any changes, as well as the switch to Edit or View mode.

 Content Box: Hosts multiple values of a specific metadata element in a specific

language.

GUI Design Specification 127

Figure 17 : GUI Specification of CHO Collection Metadata.

If the content is CHO Metadata (Figure 18), the Content Description consists of the following

subcomponents:

 Control Bar: Contains the basic controls allowing the deletion of a CHO Metadata,

the saving of any changes, as well as the switch to Edit or View mode.

 CHO Preview: Contains a small preview of the described CHO.

 CHO Metadata Menu: Used in order to browse different metadata categories.

 CHO Metadata Elements: Contains all the metadata element fields that can be used

in order to describe a CHO.

 Content Box: hosts multiple values of a specific metadata element in a specific

language.

128 Chapter 6

Figure 18 : GUI Specification of CHO Metadata.

6.2. Usability heuristics

In this section we will describe the ten usability heuristics according to Jacob Nielsen and

how our application is in compliance with these recognized usability principles. They are

called "heuristics" because they are more in the nature of rules of thumb than specific

usability guidelines.

 Visibility of system status

The system should always keep users informed about what is going on, and what their

current status in the system is. In our application this is achieved by several ways.

First of all, this is accomplished with the use of appropriate colors, font size and font weight.

For example, the two basic GUI components of the system, Collection Browser and Content

Description, are highlighted with the same intense color in order to distract user’s attention.

In addition, in the Collection Browser component the selected CHO Collection/CHO is

highlighted with gray color and the CHO’s accessibility is shown by italicizing its title text.

Finally, the edit mode of a CHO Collection/CHO is shown with light yellow color in the

background of the Content Description.

Apart from the color that a CHO Collection/CHO has when it is selected, in order for the user

to know which CHO Collection is being displayed, this information is written in the header of

GUI Design Specification 129

the Content Description View. In the case of a CHO Collection selection, the title of the CHO

Collection being displayed is written in the header and in the case of a CHO selection its title

and the CHO Collection’s title it belongs to are being displayed. Finally, the mode of the CHO

Collection/CHO being displayed is also written in the header of the Content Description View

so as to inform the user.

 Match between System and the Real World

The system should speak the users' language, with words, phrases and concepts familiar to

the user, rather than system-oriented terms.

In our application, this is achieved with the multilinguality support module that was

described in chapter 5. The curators from each museum could have the application in their

own language with the user interface terms to be changed according to their preferences.

Also, the information box that describes the use of each metadata element in the user

interface could be modified and each museum could edit its content by inserting data that

match better to the museum exhibits. For example, the metadata element Creator for a

museum with paintings means the creator of a painting. From the other hand, the same

element for a natural history museum has no sense because for instance, there is not a

creator of a lizard. Creator element for a NHM could be a photographer or a collector. So,

this museum could edit the information provided in this metadata element and provide

information matching better to its criteria.

 User Control and Freedom

Users often choose system functions by mistake and will need a clearly marked "emergency

exit" to leave the unwanted state without having to go through an extended dialogue. That’s

why in every user action there are “cancel” options so as to give user the opportunity to

leave this state. For example, when a user edits CHO Collection Metadata and selects

another CHO Collection from the Collection Browser View by mistake without having saved

his changes, the system informs him that he has selected to view another CHO Collection

without saving his previous changes. That gives him the option to return to his previous

state without losing any data.

 Consistency and Standards

The user interface, as was mentioned in the previous section in the basic application

structure, consists of a basic pattern that remains such in all the states of the application. All

the components have a specific place in the page, in order to not confuse the user with

watching the same components in different places in the screen.

130 Chapter 6

 Error Prevention

The strategy that was followed for handling the system’s errors, during the design of the

user interface, was both the prevention and the recover from the errors. This is achieved

mainly with the detailed but also short prompts that there are in all form fields, the ability of

canceling the user’s action and his return in the previous status and finally with the

appearance of descriptive error messages.

 Recognition rather than recall

A system should minimize the user's memory load by making objects, actions, and options

visible. The user should not have to remember information from one part of the dialogue to

another. Instructions for use of the system should be visible or easily retrievable whenever

appropriate. In our application this is accomplished with the use of the information boxes

provided for each metadata element in the user interface. The user doesn’t need to

remember the use of each element or go back to documents to find this information. The

system provides an information box for each metadata element which is displaying when

the user clicks on the information icon next to the element title. In case of Europeana

Semantic Elements, these information boxes contain the official specification as described in

the ESE specification [2].

 Flexibility and efficiency of use

The use of accelerators may often speed up the interaction for the expert user in such a way

that the system can cater to both inexperienced and experienced users. In our application

this acceleration is achieved with the use of keyboard shortcuts (like Ctrl-S for Save).

 Aesthetic and minimalist design

The user interface of an application should be simple, minimal and not contain information

which is irrelevant or rarely needed. The more information that appears on the screen, the

less visible each unit of information becomes. In our application the most part of the “screen

real estate” is occupied by the Collection Browser widget and the Content Description

widget. These widgets contain all the basic information and all the often-executed

operations made by the users. Moreover, the metadata elements have been categorized in

such a way that the most often used elements are grouped together in the first (selected by

default) category and the most rarely used elements in the last category. In addition to this,

the metadata elements in each category have been ordered so as to place the most

important elements to the top of the list in order to avoid user from scrolling.

Also, the user interface consists of two basic colors (green and gray-silver) in order to be

simple and minimal but also pleasant and easy in use. The green color was adopted due to

the fact that declares security, accuracy and incitement and exists in some points of the UI

because of his intense hue. Gray-silver was adopted because it is a neutral color; it is almost

GUI Design Specification 131

complementary to the green and because of his soft hue. That’s the reason why the most

elements of the user interface are highlighted with this color. The green color has been used

in elements with high importance, as for instance, to indicate the Collection Browser widget

or the selected category of the metadata menu.

The buttons of the UI are colored with the green, red and silver color. The silver buttons

indicate operations that concern just the user interface. To be more specific, it indicates all

the operations that have not any impact to the repository of the application and thus are

reversible. Such operations are: the cancellation of user actions, the change of the mode of

the CHO/CHO Collection metadata and the change of the media object of the described

CHO. The green color as already mentioned declares security, accuracy and incitement. As a

result, buttons with these colors prompt for accurate and safe actions. Finally, the red color

indicates emphasis and loss. It has been used only in cases of deletion of objects such as the

deletion of CHOs or the deletion of a whole CHO Collection.

 Help users recognize, diagnose and recover from errors

If a user does an operation and for some reasons an error occurred, the user is always

informed via a popup window. The popup window contains descriptive information about

what has caused the error and guides the user with specific information in order to recover

from the error. To mention that the error messages are not aggressive and there aren’t

exclamations so as not to intimidate the user and conclude to his demoralization.

 Help and documentation

The system supplies a help option in the Main Menu GUI component where the user can

find all the information needed in order to complete a specific task. All the possible

scenarios have been recorded, with specific screenshots for each scenario provided.

Chapter 7

Implementation

EuroMuse has been implemented as a Web application using the Google Web Toolkit (GWT)

platform. A fully functioning instance of the tool has been deployed in the following URL

address: http://147.27.41.103:8080/mmat/. The tool provides all the functionality described

in the previous sections, and is currently tested by NHM partners. It allows, users of three

types (i.e., administrators, curators, and guests) to perform the following actions depending

on their access rights:

 Create/delete/manage CHO Collections

 Describe CHO Collections (with appropriate metadata)

 Import/create/delete/manage/export CHO Metadata records

 Import/publish/update/delete CHOs

 Create/delete/update/manage Users

In this chapter, we will describe some implementation issues of the application which are

separated in two sections:

 Architecture implementation, based on the System Architecture.

 Graphical User Interface implementation, based on the GUI Specification.

7.1. Architecture

The implementation of the system architecture as described in chapter 5, is comprised of

the Client Side and the Server Side logic.

http://147.27.41.103:8080/mmat/

134 Chapter 7

7.1.1. Client Side

The Client Side implementation, which adopts the MVP design pattern, is described

thoroughly in the next subsections.

7.1.1.1. Model

The Model of our application consists of the following Java classes that comprise the SIPs

and DIPs of the application:

 CollectionSIP: Contains all the CHO Collection information that is submitted to the
repository.

 RecordSIP: Contains all the CHO information that is submitted to the repository.

 CollectionDIP: Contains all the CHO Collection information that is disseminated
from the repository.

 CompactCollectionDIP: Contains a part of the CHO Collection information (id, title,
lastModified) that is disseminated from the repository.

 RecordDIP: Contains all the CHO information that is disseminated from the
repository.

 CompactRecordDIP: Contains a part of the CHO information (id, title, status,
accessibility) that is disseminated from the repository.

 CompactUser: Contains all the data that characterize a user apart from the
password.

7.1.1.2. View

Below, we quote a brief description for each View we have implemented in our application.

Each View is a Java class and is connected with its own uiBinder.xml template file in order to

define its widgets and its layout.

The Views are:

 AdministrationView: Allows administrators to view and edit all the user profiles and

also create a new user account.

 ApplicationLayoutView: Responsible for defining the overall layout of the

application.

 CollectionBrowserView: Allows curators to browse collections of CHOs for which

they provide descriptions.

 CollectionMetadataView: Allows curators to view, add and edit descriptions

(metadata) and update or delete a whole CHO collection.

 RecordMetadataView: Composed of two parts: the part of displaying the metadata

elements of a CHO and the part of displaying a preview of this CHO. This view allows

curators to add, view and edit descriptions (metadata), to add and edit its

multimedia object and update or delete this CHO.

 LoginView: The first view of the application where the users try to login to the

system.

Implementation 135

 MenuBarView: Allows curators to import record based metadata or ESE metadata

to new or existing CHO collection, import media objects (i.e. image, video, sound,

text) and export CHO or CHO Collection metadata in ESE format.

 UserMenuView: Allows users to edit their account profile and logout from the

system.

7.1.1.3. Presenter

Similarly, we quote a brief description for each Presenter we have implemented in our

application and the App events that each presenter generates and is interested to.

 AdministrationPresenter: Sets the user account list to the corresponding View,
checks the administrator’s input when changing or creating a user account and edits
the user accounts.

 ApplicationLayoutPresenter: In control of creating all the other presenters with
supplying a View that each Presenter will drive.

Events of Interest

Event Name Generated By Data
Required

Handling Actions

ShowAdministrati
onViewEvent

MainMenuPresenter - Displays the Administration
View.

 CollectionBrowserPresenter: Sets the available CHO Collections to the tree widget,
and edits (creates ,deletes, updates) the CHO Collections and CHOs in the tree.

Events Generated

Generated Event Data Transmitted Triggering Action

RecordSelectedEvent collectionID, recordID, title View CHO description

CollectionSelectedEvent collectionID, title View CHO Collection
description

GetCollectionEvent(on open) collectionID Load CHO Collection

Events of Interest

Event Name Generated By Data Required Handling Actions

ShowAllCollectionsEvent Main menu
widget,
Application
Manager

List of
CompactCollection
DIPs

Init collection
browser, set the
CHO Collection
titles in the tree.

RefreshItemEvent Content
description
viewer widget

collectionID/
recordID, title

Update a tree
item(CHO/CHO
Collection)

ShowCollectionEvent Main menu
widget,
Application
Manager

collectionDIP Show the CHOS of
the CHO
Collection

136 Chapter 7

SetRecordToCollectionEve
nt

Main menu
widget

collectionID Set new CHO to
CHO Collection

RecordDeletedEvent Content
description
viewer widget,
Application
Manager

collectionID,
recordID

Delete the CHO
item from tree.

CollectionDeletedEvent Content
description
viewer widget,
Application
Manager

collectionID Delete the CHO
Collection item
from tree and all
its CHOs items

 ContentMetadataPresenter: The common Presenter of CollectionMetadataView
and RecordMetadataView. Its role is to display the descriptions of the selected CHO
Collection/CHO in the metadata element fields, to create, delete and update the
displayed CHO Collection/CHO and finally to make all the necessary checks in order
to decide if a CHO Collection/CHO is going to be locked or unlocked.

Events Generated

Generated Event Data Transmitted Triggering Action

RecordCreatedEvent RecordDIP create new CHO

DeleteCollectionEvent collectionID, title delete selected CHO
Collection

DeleteRecordEvent recordID, collectionID, title delete selected CHO

SaveRecordEvent recordSIP, recordID,
collectionID

save selected CHO

SaveCollectionEvent collectionSIP, collectionID save selected CHO
Collection

RefreshItemEvent collectionID, recordID, title refresh the item in the
collection browser widget

RecordSelectedEvent recordID, collectionID, title View CHO description

CollectionSelectedEvent collectionID View CHO Collection
description

Events of Interest

Event Name Generated By Data
Required

Handling Actions

ShowCollectionMetadata
Event

Application
Manager

CollectionDIP Show the CHO collection
metadata

ShowRecordMetadataEve
nt

Application
Manager

recordDIP Show the CHO metadata

RecordCreatedEvent Application
Manager

RecordDIP
boolean

Lock the created CHO

Implementation 137

doNotLock

RecordDeletedEvent Collection
browser
widget,
Application
Manager

recordID Unlock deleted CHO.
Show the first page.

CollectionDeletedEvent Collection
browser
widget,
Application
Manager

collectionID Unlock deleted CHO
Collection. Show the first
page.

 LoginPresenter: Responsible for the validation of the user’s input so as to login him
into the system.

 MainMenuPresenter: The common presenter of MenuBarView and UserMenuView.
In the case of MenuBarView it handles all the operations of importing and exporting
metadata, importing media objects and creating CHO Collections or CHOs. In the
case of UserMenuView it handles the logout operation and the updating of the
logged in user account.

Events Generated

Generated Event Data Transmitted Triggering Action

CollectionImportCompletedEvent collectionID Show the imported CHO
Collection with its CHOS

SetRecordToCollectionEvent collectionID Set the new CHO.

ShowAdministrationViewEvent Show the administration
View.

ShowCollectionEvent CollectionDIP On create CHO Collection,
show the newly created CHO
Collection.

EditCollNameToImportListEvent collectionID, title Insert the newly created CHO
Collection to the existing CHO
Collection list.

Events of Interest

Event Name Generated
By

Data Required Handling Actions

ShowAllCollectionsEvent Application
Manager

List of
CompactCollecti
onDIP

Initialize the list with the
existing CHO
Collections.

EditCollNameToImportListE
vent

Application
Manager,
Main Menu

collectionID,
title

Edit CHO Collection
name to the existing
CHO Collection list.

Each of these events extends GwtEvent and for our application we have defined handler

interfaces for each of our events.

138 Chapter 7

Binding Presenters and Views

In order to understand better the binding between the Presenters and the Views and how

the Display interface works, we will provide a small example of our implementation.

 Let’s take a part of the CollectionMetadataView:

This part has three buttons and two collection metadata elements. In order for the

application to do something meaningful, the presenter is going to need to respond to button

clicks, to populate the values of the elements and to get the user entered fields. So, in the

case of our ContentMetadataPresenter, we define these five methods in the Display

interface as such:

HasClickHandlers getSaveButton();
HasClickHandlers getDeleteButton();
HasClickHandlers getModeButton();
void setElementValues(String name, String value);
String getElementValue(String name);

The presenter calls these methods in order to handle the button clicks and populate or get

the elements values. If user clicks the delete button to delete a collection the presenter

handles the user click like this:

display.getDeleteButton().addClickHandler(new ClickHandler() {
 public void onClick(ClickEvent event) {
 deleteCollection();
 }
 });

Implementation 139

Method setElementValues () is a simple way of getting Model data into the View without the

View having intrinsic knowledge of the Model itself. The beauty of using setElementValues ()

is that changes to the model can be made without updating the view code.

Another advantage of such structure is that if we wanted for example to run this application

within a mobile browser we could switch out the views without having to change any of the

surrounding application code.

7.1.1.4. Multilinguality support

The process we followed for creating the translation for each language supported using the

Static String Internationalization technique is straightforward and is described below.

 First, we implemented two Java interfaces for each language supported:

o one for string constants, the GWT Constants interface (Constants.java)
o one for parameterized messages, the GWT Messages interface

(Messages.java)

These interfaces use annotations to specify the default translation.

 Then, for each language, we created two Java properties files:

o one for string constants (Constants_el.properties)
o one for parameterized messages (Messages_el.properties)

Finally, we replaced all the strings hardcoded in the Java source code with method calls to

the appropriate interface.

7.1.2. Server-Side

In this subsection we provide the set of services (CRUD Service, CHO Import Service,

Vocabulary Access Service, Concurrency Service) that comprise the middleware concealing

the application’s business logic from the client. The implemented methods are listed in the

tables below, providing brief descriptions regarding each method’s functionality.

Method No. 1: insertMediaObject

Description:
Inserts a media object along with its automatically
generated thumbnail images to the db.

 Method Input:

 Parameter Name Parameter Type Description

 blob Byte[] The media object as blob.

 Method Output: -

140 Chapter 7

Method No. 2: insertMediaObject

Description:

Inserts a media object along with its automatically
generated thumbnail images to the db, given the uri
pointing the original media object. The original media
object is not actually stored in the db.

 Method Input:

 Parameter Name Parameter Type Description

 uri String The media object's uri.

 Method Output: -

Method No. 3: deleteMediaObjectById

Description:
Deletes a media object along with its thumbnail
images (if any) from the db.

 Method Input:

 Parameter Name Parameter Type Description

 objectId String The media object's identifier.

 Method Output: -

Method No. 4: deleteMediaObjectByUri

Description:
Deletes a media object along with its thumbnail
images (if any) from the db.

 Method Input:

 Parameter Name Parameter Type Description

 uri String The media object's uri.

 Method Output: -

Method No. 5: insertRecord

 Description: Inserts a record SIP to a collection.

 Method Input:

 Parameter Name Parameter Type Description

 recordSIP RecordSIP A record SIP object.

 collectionId String The collection’s identifier.

userId String The identifier (username) of the
user that submitted the record.

 Method Output: -

Implementation 141

Method No. 6: updateRecord

 Description: Updates a record to a collection.

 Method Input:

 Parameter Name Parameter Type Description

 recordId String The record's identifier.

 recordSIP RecordSIP An updated record (SIP form).

collectionId String The collection's identifier.

userId String The identifier (username) of the
user that updated the record.

 Method Output: -

Method No. 7: deleteRecord

 Description: Deletes a record from a collection.

 Method Input:

 Parameter Name Parameter Type Description

 recordId String The record's identifier.

 collectionId String The collection's identifier.

userId String The identifier (username) of the
user that deleted the record.

 Method Output: -

Method No. 8: insertCollection

Description:
Inserts a collection that contains only metadata
information and no records to the db.

 Method Input:

 Parameter Name Parameter Type Description

 collectionSIP CollectionSIP A collection (SIP form).

userId String The identifier (username) of the

user that submitted the collection.

 Method Output: -

Method No. 9: insertCollection

Description:
Inserts a collection having a specific record list to the
db.

 Method Input:

 Parameter Name Parameter Type Description

 collectionSIP CollectionSIP A collection (SIP form).

recordSIPList List<RecordSIP> The collection’s record list.

142 Chapter 7

userId String The identifier (username) of the

user that submitted the collection.

 Method Output: -

Method No. 10: insertCollection

Description:

Inserts a collection having a specific record list to the db.
The media content described by the collection's records
should be specified. For each media object identified in the
content, a new record is created and placed to the
collection's record list.

 Method Input:

 Parameter Name Parameter Type Description

 collectionSIP CollectionSIP A collection (SIP form).

blobName String The name of the blob containing the
collection’s media content.

blob Byte[] The collection's media content as
blob.

status RecordStatusEnum The status of the records to be
created.

access RecordAccessEnum The access rights of the records to be
created.

userId String The identifier (username) of the user
that submitted the collection.

 Method Output: -

Method No. 11: updateCollection

 Description: Updates a collection’s metadata information.

 Method Input:

 Parameter Name Parameter Type Description

 collectionId String The collection's identifier.

collectionSIP CollectionSIP An updated collection (SIP).

userId String The identifier (username) of the
user that updated the collection.

 Method Output: -

Method No. 12: updateCollection

 Description: Inserts records to a collection's record list.

 Method Input:

 Parameter Name Parameter Type Description

 collectionId String The collection's identifier.

Implementation 143

recordSIPList List<RecordSIP> A list of records to be inserted to
the collection's record list.

userId String The identifier (username) of the
user that updated the collection.

 Method Output: -

Method No. 13: updateCollection

Description:

Inserts records to a collection's record list by specifying the
records' media content. For each media object identified in
the content, a new record is created and placed to the
collection's record list. All the identified media objects are
stored in a separate media file collection having the same
identifier as the record collection.

 Method Input:

 Parameter Name Parameter Type Description

 collectionId String The collection's identifier.

blobName String The name of the blob containing
the records’ media content.

blob Byte[] The records’ media content as
blob.

status RecordStatusEnum The status of the records to be
created.

access RecordAccessEnum The access rights of the records
to be created.

userId String The identifier (username) of the
user that updated the collection.

 Method Output: -

Method No. 14: deleteCollection

 Description: Deletes a collection from the db.

 Method Input:

 Parameter Name Parameter Type Description

 collectionId String The collection's identifier.

userId String The identifier (username) of the

user that deleted the collection.

 Method Output: -

Method No. 15: insertUser

 Description: Inserts a user to the db.

 Method Input:

 Parameter Name Parameter Type Description

144 Chapter 7

 user User A user object.

 Method Output: -

Method No. 16: updateUser

 Description: Updates a user to the db.

 Method Input:

 Parameter Name Parameter Type Description

 user User An updated user object.

 Method Output: -

Method No. 17: activateUser

 Description: Activates a user.

 Method Input:

 Parameter Name Parameter Type Description

 userId String The user's identifier.

 Method Output: -

Method No. 18: deactivateUser

 Description: Deactivates a user.

 Method Input:

 Parameter Name Parameter Type Description

 userId String The user's identifier.

 Method Output: -

Method No. 19: deleteUser

 Description: Deletes a user from the db.

 Method Input:

 Parameter Name Parameter Type Description

 userId String The user's identifier.

 Method Output: -

Implementation 145

Method No. 20: getMediaObjectUri

 Description: Retrieves the uri of a media object.

 Method Input:

 Parameter Name Parameter Type Description

 objectId String The media object's identifier.

 Method Output:

 Parameter Type Description

 String The requested media object uri.

Method No. 21: getSourceThumbnailUri

Description:
Retrieves the source thumbnail image uri of a media
object.

 Method Input:

 Parameter Name Parameter Type Description

 objectId String The media object's identifier.

 Method Output:

 Parameter Type Description

 String The requested source thumbnail image uri.

Method No. 22: getThumbnailUri

 Description: Retrieves the thumbnail uri of a media object.

 Method Input:

 Parameter Name Parameter Type Description

 objectId String The media object's identifier.

 Method Output:

 Parameter Type Description

 String The requested thumbnail uri.

Method No. 23: getRecord

 Description: Retrieves a record from a collection.

 Method Input:

 Parameter Name Parameter Type Description

146 Chapter 7

 recordId String The record's identifier.

 collectionId String The collection's identifier.

 Method Output:

 Parameter Type Description

 RecordDIP The retrieved record (DIP).

Method No. 24: getRecordInESEFormat

 Description: Retrieves a record in ESE format from a collection.

 Method Input:

 Parameter Name Parameter Type Description

 recordId String The record's identifier.

 collectionId String The collection's identifier.

 Method Output:

 Parameter Type Description

 String The ESE record.

Method No. 25: getCollection

 Description: Retrieves a collection from the db.

 Method Input:

 Parameter Name Parameter Type Description

 collectionId String The collection's identifier.

 Method Output:

 Parameter Type Description

 CollectionDIP A light version of the collection (DIP form).

Method No. 26: getCollection

Description:

Retrieves a collection from the db. An option for
defining the preferred language of the returned record
titles is available.

 Method Input:

 Parameter Name Parameter Type Description

 collectionId String The collection's identifier.

 locale String The language option.

 Method Output:

Implementation 147

 Parameter Type Description

 CollectionDIP A light version of the collection (DIP form).

Method No. 27: getCollectionInESEFormat

 Description: Retrieves a collection in ESE format from the db.

 Method Input:

 Parameter Name Parameter Type Description

 collectionId String The collection's identifier.

 Method Output:

 Parameter Type Description

 String The collection’s records in ESE format.

Method No. 28: getCompactCollection

Description:

Retrieves a compact form of a collection from the db.
An option for defining the preferred language of the
returned collection’s data is available.

 Method Input:

 Parameter Name Parameter Type Description

 collectionId String The collection's identifier.

 locale String The language option.

 Method Output:

 Parameter Type Description

 CompactCollectionDIP A compact version of the collection (DIP form).

Method No. 29: getCollectionList

Description:

Retrieves a list of the collections (only identifier and
title pairs) in the db. An option for defining the
preferred language of the returned collection titles is
available.

 Method Input:

 Parameter Name Parameter Type Description

 locale String The language option.

 Method Output:

 Parameter Type Description

148 Chapter 7

 List<CompactCollectionDIP> A list of compact collection DIPs.

Method No. 30: getUser

 Description: Retrieves a user from the db.

 Method Input:

 Parameter Name Parameter Type Description

 userId String The user's identifier.

 Method Output:

 Parameter Type Description

 User The retrieved user.

Method No. 31: getUserList

 Description: Retrieves a list of users from the db.

 Method Input: -

 Method Output:

 Parameter Type Description

 List<CompactUser> A list of users in their compact form.

Method No. 32: authenticateUser

 Description: Authenticates a user.

 Method Input:

 Parameter Name Parameter Type Description

 userId String The user's identifier.

password String The user’s password.

 Method Output:

 Parameter Type Description

 CompactUser The compact version of the authenticated user.

Method No. 33: lockRecord

 Description: Acquires lock for a specific record.

Implementation 149

 Method Input:

 Parameter Name Parameter Type Description

 collectionId String The collection's identifier.

recordId String The record’s identifier.

timestamp long Timestamp that declares the last
modification of the record.

 Method Output:

 Parameter Type Description

 RecordDIP The record that was locked.

Method No. 34: lockCollection

 Description: Acquires lock for a specific collection.

 Method Input:

 Parameter Name Parameter Type Description

 collectionId String The collection's identifier.

timestamp long Timestamp that declares the last

modification of the collection.

 Method Output:

 Parameter Type Description

 CollectionDIP The collection that was locked.

Method No. 35: unlockResource

 Description: Releases lock for a specific resource.

 Method Input:

 Parameter Name Parameter Type Description

 id String The resource’s identifier.

timestamp long Timestamp that declares the last

modification of the resource.

 Method Output: -

Method No. 36: refreshLock

 Description: Refreshes the lock of a resource.

 Method Input:

 Parameter Name Parameter Type Description

 id String The resource’s identifier.

150 Chapter 7

 Method Output: -

Method No. 36: suggestClassificationTerm

Description:

Returns all of the classification terms matching
the provided prefix.

 Method Input:

 Parameter Name Parameter Type Description

 prefix String The prefix to match.

limit int Maximum number of entries to

return.

 Method Output:

 Parameter Type Description

 List<NameSuggestion> A list with all the matching classification terms.

7.2. Graphic User Interface

The following sections describe the steps that a user must follow in order to complete a

specific action, by providing GUI screenshots.

7.2.1. Logging in

When the user visits the URL of EuroMuse with any web browser, the login window (Figure

19) is presented, prompting to enter his credentials before continuing to the main screen of

the tool.

Figure 19: Login window.

7.2.2. Start page

After a successful login, the user is presented with the start page of the tool (Figure 20). The

user is able to change the language of the user interface using the pull-down menu on the

Implementation 151

top-right corner of the page. The homepage of the tool also features a menu bar and a user

bar.

Figure 20: Homepage of the EuroMuse.

On the left of the screen resides the Collection Browser (Figure 21:), containing all the CHO

Collections that are already in the system. The user is able to browse the CHO Collections

and expand any of them to see the included CHOs.

Figure 21: Collection Browser.

152 Chapter 7

7.2.3. Editing user profile

The user is able to edit information related to his profile by clicking the option “My profile”

from the user bar on the top right corner of the screen. As a result, a pop up window (Figure

22) prompts the user to change his account details. The permitted user account

modifications include (a) changing password by completing the two first fields, or (b) editing

personal information (i.e., first name, last name, email).

Figure 22: The User’s Profile View.

7.2.4. Creating/Editing a new CHO Collection

The user is able to create a new CHO Collection by selecting “File -> New -> Collection” from

the main menu on the top of the page. As a result, a pop up window prompts the user to

provide a name for the new CHO Collection (Figure 23).

Figure 23: Creating a CHO Collection (left) and providing a name (right).

After providing a name, the new CHO Collection is added at the end of the CHO Collection

list in the Collection Browser, and the metadata of the CHO Collection (containing only the

title for start, as provided by the user) is presented in View Mode (Figure 24). On the top of

this page we can see the name of the CHO Collection and the current mode of the Content

Description View. Just below resides the CHO Collection’s control bar containing the control

Implementation 153

buttons and below that are the metadata fields concerning the CHO Collection. The empty

fields are hidden from the View Mode, and are displayed only in Edit Mode.

Figure 24: Metadata information of a CHO Collection in View Mode.

To be able to edit the metadata concerning the CHO Collection, the user needs to click the

[Edit] button, which makes the Content Description View enter Edit Mode (Figure 25). The

mandatory fields are marked as “required” on the right of the field box.

Figure 25: Metadata information of a CHO Collection in Edit Mode.

Additional help regarding the information required in each metadata field can be obtained

by clicking on the icon next to the title (Figure 26).

154 Chapter 7

Figure 26: Additional information about the Description metadata field.

When in Edit Mode, the CHO Collection’s control bar provides the user with three options

(Figure 27):

1. View: exits Edit Mode and returns to View Mode. If the user has made any changes,

he is prompted to save or discard them before the mode change takes place.

2. Delete: deletes the CHO Collection.

3. Save: saves the CHO Collection.

Figure 27: CHO Collection Control bar in Edit Mode.

7.2.5. Creating/editing a new CHO Metadata record

In order to create a new CHO Metadata record, the user must select File -> New -> Object

from the menu. The user is then presented with the CHO description in edit mode (Figure

28). The same screen is also displayed when a user changes the mode of an existing CHO

Metadata record from view to edit.

Implementation 155

Figure 28: CHO Metadata record in edit mode.

When an object is in Edit Mode, the control bar provides four additional options (Figure 29):

1. View: exits Edit Mode and returns to View Mode. If the user has made any changes,

he is prompted to save or discard them before the mode change takes place.

2. Delete: deletes the CHO Metadata record.

3. Save: saves the CHO Metadata record.

4. Change media object: a pop up window provides the user with the option to edit

the URL of the CHO as well as to upload a CHO stored in the hard disk of his

computer (Figure 30).

Figure 29: CHO metadata record control bar in Edit Mode.

156 Chapter 7

Figure 30: Options for adding an online object (left) and uploading an object (right).

The metadata fields about a CHO are classified in five different categories (Figure 31). When

in Edit Mode, the user can enter multiple terms/translations in each metadata field by

clicking on the [Add] button at the bottom. An example of providing a title in English and in

Greek is shown in Figure 32.

Figure 33, Figure 34, Figure 35, Figure 36, and Figure 37 provide different views for the

metadata elements of a fully described CHO, based on the metadata field classification.

Figure 31: Metadata categories in the CHO Metadata Menu.

Figure 32: Adding a Greek translation of the English title of the object.

Implementation 157

Figure 33: Basic Information of a fully described CHO.

Figure 34: Technical information of a fully described CHO.

158 Chapter 7

Figure 35: Historical Information of a described CHO.

Figure 36: Related Location Information of a described CHO.

Implementation 159

Figure 37: Related Resources Information of a described CHO.

7.2.6. Import options

The user is provided with the option to import Metadata (i.e., CHO Metadata in non ESE

format), ESE Metadata (i.e., CHO Metadata in ESE format) or Media Objects (i.e., CHOs), by

selecting File -> Import from the main menu (Figure 38).

Figure 38: Import options.

7.2.6.1. Import Metadata

The “Import Metadata” option, allows the user to import metadata in record-based XML

format, using a Mapping file created by the Europeana SIP Creator Tool [30]. When selecting

“Import Metadata”, the user is presented with the screen shown in Figure 39, prompting to:

1. Select an existing CHO Collection or create a new one.

2. Upload a DataSet & Mapping File from his computer.

3. Define the type of the resource from a pull-down menu (Video, Image, Sound, Text),

160 Chapter 7

4. Describe the status of the process from a pull-down menu (Editing in Process,

Editing Complete, Review in Progress, Complete).

5. Define the accessibility level of the resource from a pull-down menu

(Public/Private).

When the form is filled correctly and submitted, the system creates the new CHO

Collection/Metadata records, which are then added to the Collection Browser so the user

can inspect them.

Figure 39: Import metadata options.

7.2.6.2. Import ESE Metadata

The “Import ESE Metadata” option, allows the user to import metadata in ESE format. When

selecting “Import ESE Metadata”, the user is presented with the screen shown in Figure 40,

prompting to:

1. Select an existing CHO Collection or create a new one in which the imported objects

will be inserted.

2. Upload an xml file in ESE format from his computer.

3. Describe the status of the CHO Metadata record being imported from a pull-down

menu (Editing in Process, Editing Complete, Review in Progress, Complete).

4. Define the accessibility level of the objects being imported from a pull-down menu

(Public/Private).

When the form is filled correctly and submitted, the system creates the new CHO

Collection/Metadata records, which are then added to the Collection Browser so the user

can inspect them.

Figure 40: Import ESE metadata options.

Implementation 161

7.2.6.3. Import Media Objects

The “Import Media Objects” option, allows the user to import CHOs, which are used from

the system to extract the contained metadata (if available). When selecting “Import Media

Objects”, the user is presented with the screen shown in Figure 41, prompting to:

1. Select an existing CHO Collection or create a new one in which the imported media

objects will be inserted.

2. Upload a media object (image/video/sound/text) or a batch of media objects

compressed in a .zip file from his computer.

3. Describe the status of the CHOs being imported from a pull-down menu (Editing in

Process, Editing Complete, Review in Progress, Complete).

4. Define the accessibility level of the objects being imported (Public/Private).

When the form is filled correctly and submitted, the system creates the new CHO

Collection/Metadata records, which are then added to the Collection Browser so the user

can inspect them.

Figure 41: Import media object options.

7.2.7. Export options

The user is provided with the option to export the metadata of a CHO Collection’s records,

or the metadata of a specific CHO in ESE format, by selecting File -> Export -> ESE Metadata

(Figure 42). When selecting the “Export ESE Metadata” option, an .xml file containing the

ESE Metadata is offered to the user for download.

Figure 42: Export options.

162 Chapter 7

7.2.8. Administration

When the user is logged in as administrator, the main menu bar contains an additional

“Administration” option (Figure 43).

Figure 43: Menu bar of the tool when logged in as an administrator.

When the user enters the “Administration” menu, he is presented with a page with a list of

all the user accounts with their details, and the option to create new user accounts (Figure

44).

Figure 44: Administration page.

7.2.8.1.Editing user accounts

The administrator is the only person who can edit the user account details except from the

password. In order to change one field of someone’s account, he just needs to find the user

from the list and click the field he wants to edit (Figure 45). To save the changes made, he

has to click the [Apply] button at the bottom right corner of the page.

Implementation 163

Figure 45: Editing email field of the user “nhmc1”.

7.2.8.2.Creating user accounts

In order to create a new account the administrator has to click on the “New user” button on

the top right corner of the administration page (Figure 44) and fill in the form in the pop up

window (Figure 46). The administrator needs to enter the user’s: (a) username (must be

unique), (b) password (can be later changed by the user), (c) first name, (d) last name and (e)

email, as well as to define information about the user’s (a) group (i.e., administrator,

curator, guest) and (b) status (i.e., active or not).

Figure 46: Creating a new user account.

Chapter 8

Evaluation

The application was evaluated twice during its development and one time after its first

stable release. Firstly, an internal think-aloud evaluation took place in TUC-MUSIC and a

hands-on evaluation occurred at Athens in March by the NHMs participating in the Natural

Europe project. The problems that emerged from these evaluations have already been

overcome. After its first release, it was evaluated during the Natural Europe curators

summer school in June in Chania, Crete.

The internal think-aloud evaluation in TUC-MUSIC was performed by giving the laboratory

faculty a number of specific tasks to perform, while been observed by us. During the process

they were asked to say whatever they were looking for, thinking and feeling while

completing these tasks. The problems that emerged from this process were:

 The header of the Content Description widget, in case of a CHO display, contained

only the title of the CHO. When a CHO was inside a CHO Collection with many other

CHOs, the Collection Browser hadn’t enough space to display its corresponding CHO

Collection. As a result, the user did not know in which CHO Collection the displayed

CHO belongs to. To overcome this issue, in the header of the Content Description

widget we added the title of the CHO Collection next to the CHO title.

 The metadata elements were not separated in different categories. As a result, the

user had to scroll a lot in order to find a metadata element. To avoid this, we

categorize the metadata elements in five categories according to their importance.

 The default language corresponding to the metadata elements was not set. The user

of a specific nation due to the fact that the metadata elements he will complete will

often be completed to his language, pushed the need of setting as a default

language, the language selected for the display of the user interface. If the UI is

displayed for instance in Greek, then all the metadata elements will have as a

default language the Greek language.

166 Chapter 8

The problems that emerged from the first meeting of the Natural Europe project

participants in Athens were:

 The user interface presented flaws in small notebook screens such some scrolling

issues.

 In case of a long CHO/CHO Collection title, the user had to scroll a lot in the

Collection Browser widget to see all the title. As a result we cut all the titles of more

than 25 characters so as to occupy the space of the Collection Browser widget and

when the user desires to see all the title he can hover over it.

 When there were a lot of CHOs, there was a difficulty in finding a specific CHO by its

title in the Collection Browser widget. This problem has been overcome by placing

all the titles in alphabetical order.

 The CHO/CHO Collection title in the Collection Browser widget was taken randomly

of all the available titles each expressed in a different language no matter what the

selected language of the user interface was. Now, the Collection Browser widget

displays the title in the selected language of the UI. If this title doesn’t exist, then it

displays randomly one.

In the Natural Europe curators summer school in Chania the only problem that emerged was

the appearance of the “OK” button in the popup window when saving the metadata of a

CHO. The users characterized it as very annoying due to the fact that it was required to click

on the "OK" button every time they pushed the "SAVE" button.

Despite this, the users were very satisfied with the whole application. They characterized it

simple and easy to understand. They claimed that the colors of the user interface are very

pleasant and not tedious. In addition, they asserted that the application offers them

convenience in many issues and proposed some extra features that they want us to support

in the future.

Chapter 9

Related Work

In this chapter, we present the most relevant applications that have been implemented to

this research field. In particular, we will describe the Collective Access cataloguing tool and

the Europeana.eu SIP Creator.

9.1. Collective Access

CollectiveAccess is a highly configurable cataloguing tool and web-based application for

museums, archives and digital collections. Available free of charge under the GPL open-

source license, it requires little to no custom programming to support a variety of metadata

standards, external data sources and repositories, as well as most popular media formats. In

addition to multilingual cataloguing facilities, it allows publication of this data in the

languages of user’s choice. Below are listed the advantages of this application:

 CollectiveAccess is a highly configurable cataloguing tool that doesn’t require

custom programming. It supports most metadata standards through straightforward

configuration. Out-of-the-box support is available for several popular standards

including DublinCore, PBCore and SPECTRUM.

 A variety of external data sources and services can be accessed for cataloguing and

data display within CollectiveAccess. CollectiveAccess can also integrate with

external digital repository systems such as Fedora and IRODS.

 As befits a good world-citizen, CollectiveAccess offers support for multi-lingual

cataloguing, as well as translation of the user interface into seven languages (with

more on the way). Even better, the CollectiveAccess web-publishing module

facilitates creation of multi-lingual web sites. So not only can you catalogue in many

languages, you can publish your data in them as well.

http://www.dublincore.org/
http://www.pbcore.org/
http://www.collectionstrust.org.uk/spectrum
http://www.fedora-commons.org/
http://www.irods.org/
https://www.wir-waren-so-frei.de/

168 Chapter 8

 CollectiveAccess can handle a long list of digital media formats, including many

popular image, video, audio and document formats. All accepted formats can be

automatically re-sized, watermarked and converted to web-viewable formats using

criteria the user defines.

 CollectiveAccess is free software released under the GNU Public License, version 2.

All of it. There is nothing to buy. There are no "Pro" versions that just happen to cost

something. CollectiveAccess is entirely free to use, redistribute, and modify to suit

user’s needs.

 An incredibly diverse range of collections use CollectiveAccess: from fragments of

lost silent films to the latest 4k digital film; from pottery shards to 10m long steel

beams; from postcards to performance video. Project-specific setups in the

configuration library, our online support forum and user group meetings allow all

users to share in the valuable experience gained from these projects.

Although Collective Access supports several popular standards, it doesn’t support the

Europeana Semantic Elements specification. That means that all the content published to

this tool isn’t published to Europeana’s web portal where increasingly impressive amounts

of cultural heritage from various sources are exposed to European citizens. As a result, this

content is only accessible from their web-site application.

Also, in case of a museum not having already web-accessible published content, Collective

Access doesn’t offer the ability to publish it. That means that the museum must find other

means to publish its content and make it accessible to the public.

Finally, there are many cases where museums have already existing metadata in some

legacy or internal (museum specific) formats that are deprecated or unpublished, and as a

result Collective Access doesn’t support it. In that case, Collective Access does not give the

ability to museum curators to import the already existing metadata and avoid them from

writing all the metadata from scratch.

We assume that these are some crucial issues that Collective Access doesn’t support due to

our experience from contacting the museum curators of the six museums participating in

the Natural Europe project.

9.2. Europeana.eu SIP Creator

The SIP-Creator is a standalone Java application designed to enable people to transform any

record-based XML input into the format required for ingestion into the Europeana platform.

SIP stands for Submission Information Package, and in this context the information

submitted will be the original XML file combined with a specification of how it will be

mapped to the new format.

http://wiki.collectiveaccess.org/index.php?title=Supported_Media_File_Formats
http://www.gnu.org/licenses/gpl-2.0.html
http://collectiveaccess.org/about/users
http://collectiveaccess.org/support/library
http://collectiveaccess.org/forum
http://collectiveaccess.org/news/?p=105

EvaluationRelated Work 169

The SIP-Creator in order to do the mapping work integrates a general-purpose programming

language: Groovy language. Groovy is a rich and expressive scripting language which is so

related to Java that it is very natural to build it right into a Java application. The SIP-Creator

has Groovy integrated in such a way that the user can edit the snippets of Groovy code and

see the results of the changes they make immediately. The Groovy code is “live”, which

makes learning the necessary elements of the language quite easy.

To build a mapping you must go through four stages, indicated by different tabs in the

interface.

1. First the source XML file is analyzed, statistics are gathered, and you are asked to

select the XML element which separates one record from the next.

2. Then by making selections you build the initial rough mapping, and to make it easier

many straightforward mapping choices are made automatically for you.

3. Next, you enter the refinement phase where each mapping can be viewed and

edited. This is the only place where you edit Groovy code.

4. Finally the normalization can be done when the mapping is complete, and you can

verify that the mapping is correct by stepping through records and seeing the results

in a kind of dry-run.

The SIP-Creator has a built-in validation of the resulting record, which reports any problems
in the mappings that is likely to produce errors.

EuroMuse offers the same functionality of SIP-Creator in terms of normalizing the source

XML files using the mappings provided and producing ESE-CHO application profile compliant

documents. The mappings used for the procedure are in the exact same format as SIP-

Creator mappings. Although the creation of these mappings is not facilitated by EuroMuse,

they can be produced using SIP-Creator, or completely written by hand.

Moreover, EuroMuse allows the seamless importing of the source XML in the web-based

system, which instantly offers collaboration support to all museum curators. As SIP-Creator

is a standalone application, each curator needs to install it on his computer, whereas using

EuroMuse, a curator only needs a browser window, the source XML and the mapping file to

perform the normalization.

Chapter 10

Conclusion

In this thesis we presented EuroMuse: a web-based management system, which facilitates

the authoring and metadata enrichment of cultural heritage objects in order to be exploited

by Europeana. Due to the fact that the management systems of cultural heritage

organizations – libraries, museums, archives and audiovisual collections – catalogue their

content in different ways and to different standards, EuroMuse supports a rich metadata

element set, which includes the Europeana Semantic Elements (ESE), so as to establish the

interconnection and interoperability among the museum management systems.

Summarizing, EuroMuse gives the ability to:

 Create, delete, update, and review CHO Collections

 Describe CHO Collections (with appropriate metadata)

 Create, delete, update, review, import and export CHO Metadata

 Import, publish, update, delete CHOs

 Create, delete, update, manage user accounts

 Browse the application in many languages

 Link CHOs with well-established controlled vocabularies

It is developed with the Google Web Toolkit (GWT) framework, in the context of Natural

Europe project and is actively being used by the cultural museum experts of six European

Natural History Museums who have evaluated the system and have already described over

1000 fully described cultural heritage objects.

Works Cited

1. Europeana. http://europeana.eu/portal/.

2. Europeana Semantic Elements specifications v3.4.

http://version1.europeana.eu/c/document_library/get_file?uuid=77376831-67cf-4cff-a7a2-

7718388eec1d&groupId=10128.

3. Dublin Core. http://dublincore.org/documents/.

4. Walmsley, David C. Fallside and Priscilla. XML Schema. W3C Recommendation, 2004.

http://www.w3.org/TR/xmlschema-0/.

5. Ajax: A New Approach to Web Applications. Garrett, Jesse James. 2005.

6. Fielding, Roy T., et al. RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1. June 1999.

http://tools.ietf.org/html/rfc2616.

7. Dave Raggett, Arnaud Le Hors, Ian Jacobs. HTML 4.01. W3C Recommendation, 24

December 1999. http://www.w3.org/TR/html4/.

8. Tomcat. http://tomcat.apache.org/.

9. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation 26

November 2008. http://www.w3.org/TR/2008/REC-xml-20081126/.

10. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C Candidate

Recommendation 21 July 2011. http://www.w3.org/TR/xmlschema11-1/.

11. XMLBeans. http://xmlbeans.apache.org/.

12. Lucene. http://lucene.apache.org/java.

13. Solr. http://lucene.apache.org/solr/.

14. Frank Manola, Eric Miller. RDF. W3C Recommendation, 10 February 2004.

http://www.w3.org/TR/rdf-primer/.

15. Alistair Miles, Sean Bechhofer. SKOS. W3C Recommendation, 18 August 2009.

http://www.w3.org/TR/skos-primer.

16. Peter F. Patel-Schneider, Patrick Hayes and Ian Horrocks. OWL Web Ontology Language

Semantics and Abstract Syntax. W3C Recommendation, 10 February 2004.

http://www.w3.org/TR/owl-semantics/.

17. Carroll, Graham Klyne and Jeremy J. Resource Description Framework (RDF): Concepts

and Abstract Syntax. W3C Recommendation, 10 February 2004. http://www.w3.org/TR/rdf-

concepts/.

18. Berners-Lee, David Beckett and Tim. Turtle - Terse RDF Triple Language. W3C Team

Submission, 14 January 2008. http://www.w3.org/TeamSubmission/turtle/.

19. Google Web Toolkit (GWT). http://code.google.com/intl/el-GR/webtoolkit/.

20. Biodiversity Heritage Library (BHL). http://www.biodiversityheritagelibrary.org/.

21. Organic.Edunet Portal. Learning Material on Organic Agriculture in Europe.

http://portal.organic-edunet.eu/.

22. Europeana Data Model Definition V.5.2.

http://version1.europeana.eu/c/document_library/get_file?uuid=aff89c92-b6ff-4373-a279-

fc47b9af3af2&groupId=10605.

23. SIP-Creator. http://europeanalabs.eu/sip-creator/.

24. ImageMagick . http://www.imagemagick.org/script/index.php.

25. FFmpeg. http://www.ffmpeg.org/.

26. The Open Archives Initiative Protocol for Metadata Harvesting.

http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm.

27. Potel, Mike. MVP: Model-View-Presenter. The Taligent Programming Model for C++ and

Java. 1996.

28. Reenskaug, Trygve. MVC XEROX PARC 1978-79.

29. ISO 14721:2003 Open Archival Information System (OAIS).

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=24683

.

30. Europeana Labs: SIP Creator. http://europeanalabs.eu/sip-creator/.

31. Catalogue of Life. http://www.catalogueoflife.org/.

32. D2R Server. http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/.

33. exist-db . http://exist.sourceforge.net/.

34. http://en.wikipedia.org/wiki/Optimistic_concurrency_control.

35. Europeana Semantic Elements Specification V.3.3.

http://version1.europeana.eu/c/document_library/get_file?uuid=a830cb84-9e71-41d6-

9ca3-cc36415d16f8&groupId=10602.

36. Europeana Semantic Elements Specifications V3.3.

http://version1.europeana.eu/c/document_library/get_file?uuid=a830cb84-9e71-41d6-

9ca3-cc36415d16f8&groupId=10602.

37. Java. http://www.oracle.com/technetwork/java/index.html.

38. GWT. http://code.google.com/webtoolkit/.

39. JSON (JavaScript Object Notation). http://www.json.org/.

40. Creative Commons. http://creativecommons.org/licenses/.

Appendix

The ESE-CHO AP Full Element Set

The Natural Europe ESE-CHO AP Full Element Set is a hierarchy of data elements, including

container data elements and simple data elements. For each data element, the ESE-CHO AP

Schema defines:

 Default Logical Name: the name by which the data element is appeared in the
Multimedia Authoring Tool;

 Element Name: the name by which the data element is referenced;

 Description: a short description of the use of the data element;

 Multiplicity: the number of values allowed; the size is given as a single number - e.g.
‘1’ - or as a range – e.g. ‘0..*’ - where ‘*’ indicates an unbounded maximum.

 Value space: the set of allowed values for the data element – typically in the form of
a vocabulary or a reference to another standard;

 Datatype: indicates whether the values are LangString, DateTime, VocabularyTerm,
or String.

 Obligation: indicates whether an element is mandatory or recommended. All
elements that do not apply to one of these two categories are considered optional.
In some cases obligation describes the mapping of an element to a metadata
standard. Also, it can be used to explain the relations between different elements
(e.g., if an element is used, then another one becomes mandatory, etc.).

 Example: an illustrative example of the element.

 Method of input: describes the method (manual or automatic) of input for the
elements.

The ESE-CHO APPLICATION PROFILE

Default

Logical

Name

Element Description Multiplicity Value Space Data Type Obligation Example Method of input

Basic Info 1. Basic Groups the general

information that

describes this CHO

object as a whole.

Title 1.1 title The title of the

original analog or

born digital object.

1..* LangString Mandatory

data element.

Cyprinus carpio

(Language

Latin)

Wolf drinking

water in natural

habitat

(Language

English)

Automatic if chosen

from element 1.11

classification, then

manually (User

always has the

option to override)

Alternative

Title

1.2 alternative Any alternative title

by which the original

analog or born digital

object is known. This

can include

abbreviations or

translations of the

title, including

0..* LangString Recommended

data element.

carp (Language

English)

Karpkala

(Language

Eesti)

Automatic if chosen

from element 1.11

classification, then

manually (User

always has the

option to override)

common names (in

the case that the title

is the 1.11

classification latin

term)

Creator 1.3 creator This is the name of

the creator of the

original analog or

born digital object.

NOTE: This element

should not be

confused with the

element 1.4

contributor.

0..* use a

consistent form

of the name

e.g.

Shakespeare,

William.

LangString Recommended

data element.

In the case of

an animal

photograph one

could consider

as Creator the

photographer

and as

Contributor the

person that has

processed this

photograph. In

the case of an

exhibit

photograph one

could consider

as Creator the

person that set

up this exhibit

and as

Contributor the

photographer

of this exhibit.

Manually

Contributor 1.4 contributor The name of

contributors to the

original analog or

born digital object.

This could be a

person, an

organisation or a

service.

0..* use a

consistent form

of the name

e.g.

Shakespeare,

William.

LangString Recommended

data element.

Friedrich

Schmidt

(collector)

Tiit Hunt

(photographer)

Manually

 1.4.1 role Kind of contribution. 1 Please consult

the MARC

Code List for

Relators,

(available at

id.loc.gov/voca

bulary/relators

.html) for

possible roles.

VocabularyTer

m

Mandatory

data element

IF 1.4

contributor is

used.

Minimally, the

Contributor(s)

of the CHO

object should

be described.

 Default

“Photographer”

then manually

Description 1.5 description A description of the

original analog or

born digital object.

1..* LangString Mandatory

data element.

Crystal

aggregate of

mineral

cavansite.

Cavansite

occurs as

secondary

mineralization

product in

basalts and

Manually

andesites.

(Language

English)

Mineraal

kavansiit esineb

sekundaarse

mineraalina

Basaltides ja

andesiitides.

(Language

Eesti)

Language 1.6 language The language of text

included in images. If

there is no language

aspect to the digital

object (e.g. a

photograph), please

ignore this element.

NOTE: This element

is not for the

language of the

metadata of a

resource.

0..* Use a 3 letter

code from ISO

639-2

(provided)

string Strongly

Recommended

data element

where

available.

Mandatory

data element

if 1.9 is “Text”

est Manually

Publisher 1.7 publisher The name of the

publisher (the entity

responsible for

making the resource

available) of the

0..* In case of a

person use a

consistent form

of the name

e.g

LangString Recommended

data element.

Estonian

Museum of

Natural History

(Language

English)

Manually

original analog or

born digital object.

Shakespeare,

William.

Eesti

Loodusmuuseu

m

(Language

Eesti)

Subject 1.8 subject This is the subject of

the original analog or

born digital object

1..*

LangString Mandatory

data element.

Animalia

Chordata

Actinopterygii

cypriniformes

cyprinidae

Cyprinus

Automatic if chosen

from element 1.11

classification, then

manually (User

always has the

option to override)

Type 1.9 type The type of the

original analog or

born digital object as

recorded by the

content holder. Type

includes terms

describing general

categories, functions,

genres, or

aggregation levels

for content.

0..* Preferably the

values should

be taken from

the controlled

DC Type

vocabulary

(provided

Vocabulary)

LangString or

VocabularyTer

m

Recommended

data element.

Image

Or

Living organism

(Language

English)

Elusorganism

(Language

Eesti)

Manually

Provenance 1.10

provenance

This relates to the

ownership and

custody of the

original analog or

0..* LangString Optional data

element

Donated by the

National Library

 In 1965

(Language

Manually

born digital object. English)

Classification 1.11

classification

This relates to the

latin term of the

original or born

digital object.

0..1 SKOS

concept(s)

from the

Natural Europe

SKOSified

classification

scheme

VocabularyTer

m

Strongly

recommended

data element

Cyprinus carpio

(Language

Latin)

Manually

 2. Life Cycle Describes the history

and current state of

this CHO object and

those entities that

have affected this

object during its

evolution using the

Multimedia

Authoring Tool (as

well as the status of

this CHO object

within the underlying

repository).

 2.1 version The edition of this

object.

1 string Mandatory

data element.

1.2.alpha Manually

Status 2.2 status The completion

status or condition of

this object

1 Editing in

progress

Editing

complete

Review in

progress

Complete

VocabularyTer

m

Mandatory

data element.

 Manually

 2.3 log Those entities (i.e.,

person, organization,

service) that have

contributed to the

state of this object

during its life cycle

(e.g., creation,

editing, publication).

0..* string System

generated

Tiit Hunt

(Content

Publishing),

“2003-03-13”

 2.3.1 action Kind of contribution. 1 CHO Creation

Content

Publishing

CHO

Annotation

CHO Validation

VocabularyTer

m

 Automatic, based

on the user action.

 2.3.2 actor The identification of

and information

about entities

contributing to this

object.

1..* use a

consistent form

of the name

e.g.

Shakespeare,

string Automatic, based

on the user account

information

William.

 2.3.3 date The date of the

contribution.

1 DateTime Automatic, based

on the system's

date

Technical Info 3. Technical This category

describes the

technical

requirements and

characteristics of this

CHO object.

Object URL 4.1 uri An unambiguous URL

reference to the

digital object on the

provider’s web site in

the best available

resolution/quality.

This is a URL that will

be active in the

Europeana interface.

It will lead users to

the digital object on

the provider’s

website where they

can view or play it.

The digital object

needs to be directly

accessible by the URL

0..1 valid URL URI Mandatory

data element

Either 4.1 or

4.2 is

mandatory.

 Automatic

whenever possible.

For harvested

material the

information is

automatically

imported.

and reasonably

independent at that

location. Use 4.2 for

digital objects

embedded in HTML

pages (even where

the page is extremely

simple).

Context URL 4.2 contextUri An unambiguous URL

reference to the

digital object on the

provider’s web site in

its full information

context. This is a URL

that will be active in

the Europeana

interface. It will lead

users to the digital

object displayed on

the provider’s web

site in its full

information context.

Use 4.2 if you display

the digital object

with extra

information (such as

header, banner etc).

0..1 valid URL URI Mandatory

data element

Either 4.1 or

4.2 is

mandatory.

 Automatic

whenever possible.

For harvested

material the

information is

automatically

imported.

Thumbnail

URL

4.3

sourceThumbna

ilUri

The URL of a

thumbnail

representing the

digital object or, if

there is no such

thumbnail, the URL

of the digital object

in the best resolution

available on the web

site of the data

provider from which

a thumbnail could be

generated.

1 valid URL URI Mandatory

data element

 Automatic

whenever possible.

For harvested

material the

information is

automatically

imported.

Content Type 4.4

resourceType

The Europeana

material type of the

resource

1 TEXT

IMAGE

SOUND

VIDEO

VocabularyTer

m

Mandatory

data element

 Automatic

whenever possible.

User always has the

option to override.

For harvested

material the

information is

simply imported or

if not given tried to

be automatically

detected.

Format 4.5 format This unqualified

element includes file

format, physical

medium or

dimensions of the

original and/or

digital object. Use of

the more specific

elements 4.6 extent

(dimensions) and 4.7

medium (physical

medium) is preferred

where appropriate.

0..* Internet media

types (originally

called MIME

types)

based on IANA

registration

(provided)

string Optional data

element

image/jpeg Automatic

whenever possible.

User always has the

option to override.

For harvested

material the

information is

simply imported or

if not given tried to

be automatically

detected.

Extent 4.6 extent The size or duration

of the digital object

and the original

object.

0..* LangString Optional data

element

1280 x 827

pixels 42.4 cm x

68 cm

(Language

English)

Automatic

whenever possible.

User always has the

option to override.

For harvested

material the

information is

simply imported or

if not given tried to

be automatically

detected.

Medium 4.7 medium This is the medium of

the original analog or

0..* LangString Optional data

element

metal

(Language

Manually

born digital object. English)

identifier 4.8 identifier This is the identifier

for the original

analog or born digital

object

0..* string Optional data

element

http://geokogu

d.info/elm/spec

imen_image/g2

97/g297-

13_b.jpg

Manually

Rights 4.9 rights Information about

intellectual Property

Rights, access rights

or license

arrangements for the

digital object

(digitized or born

digital). The value in

this element can be

any additional

information about

intellectual property

rights, access rights

or license

arrangements for the

digital object that

has not been

captured in the

controlled value in

8.4 licenceUri

element.

1..* LangString Optional data

element

Copyright ©

Natural History

Museum of

Crete

(Language

English)

Manually

Table Of

Contents

4.10

tableOfContent

s

A list of the units

within the original

analog or born digital

resource object.

0..* string Optional data

element

Chapter 1.

Introduction,

Chapter 2.

History

Manually

Historical Info 5. Historical This category

describes the spatial

and temporal

characteristics of this

CHO object.

Date 5.1 date A point or period of

time associated with

an event in the

lifecycle of the

object. Use for a

significant date in

the life of the original

analog or born digital

object. Use element

5.4 Temporal

Coverage if the date

is associated with the

topic of the resource.

0..* LangString Mandatory

data element.

Use of ISO

8601 starting

with the year

and

hyphenating

the day and

month parts:

YYYY-MM-DD.

Either 5.1 or

5.2 or 5.3 is

mandatory.

“1933-12-24” Manually

Date Created 5.2 created This is the date of

the creation of the

digital object or, in

the case of a

digitisation, the

0..* LangString Mandatory

data element.

Either 5.1 or

5.2 or 5.3 is

“1935” Manually

original physical

object. A refinement

of 5.1.

mandatory.

Date Issued 5.3 issued The date when the

digital object was

formally issued or

published. This is

likely to be the date

the original physical

object was issued in

the case of a

digitisation. A

refinement of 5.1.

0..* LangString Mandatory

data element.

Either 5.1 or

5.2 or 5.3 is

mandatory.

“2011-07-07” Manually

Coverage 5.5 coverage Coverage can be

used for either

spatial for temporal

aspects of the object

being described.

Values will typically

include either a

spatial location

(place name or

geographic co-

ordinates) or a

temporal period (a

date range or period

label). If analysis of

the data shows that

0..* LangString Recommended

data element.

Boston, MA

(Language

English)

Manually

it contains only

spatial or only

temporal data then

please map to either

5.4 or 5.6 elements.

Temporal

Coverage

5.4 temporal The temporal

characteristics of the

original analog or

born digital object

i.e. what the

resource is about or

depicts in terms of

time. This may be a

period, date or date

range. This is in

contrast to 5.1 date

which relates to an

event in the life of

the object itself (e.g.

the creation or the

art work or

publication of the

book.)

0..* LangString Recommended

data element.

Pleistocene –

Holocene

(Language

English)

Manually

Spatial

Coverage

5.6 spatial Information about

the spatial

characteristics of the

original analog or

born digital object,

i.e. what the

resource represents

or depicts in terms of

space. This may be a

named place, a

location, a spatial

coordinate or a

named

administrative entity.

1..* LangString Mandatory

data element.

Aardla

(Language

English)

Estonia

(Language

English)

Aardla

(Language

Eesti)

Eesti (Language

Eesti)

59.410556,

24.308889

Manually

Related

Resources

6. Relation This category defines

the relationship

between this CHO

object and other

CHO objects, if any.

Is Part Of 6.1 isPartOf Use for the name of

the collection which

the digital object is

part of (physically or

logically).

0..* LangString Recommended

data element.

Collection of

fish images by

Tiit Hunt

(Language

English)

Tiit Hunt'i

kalafotod

(Language

Manually

Eesti)

Source 6.2 source This element can be

used for several

different types of

sources that are

related to the object

(such as reference

sources)

0..* LangString Recommended

data element.

BAM portal

(Language

English)

Security

Magazine pp 3-

12 (Language

English)

Manually

Relation 6.3 relation This is information

about resources that

are related to the

original analog or

born digital object.

0..* string Optional data

element

maps.crace.1/3

3 - (This is the

shelf mark for a

map held In the

British Library's

Grace

Collection)

Manually

Conforms To 6.4 conformsTo The names of

standards that the

digital object

(digitized or born

digital) complies with

and which are useful

for the use of the

object.

0..* string Optional data

element

W3C WCAG 2.0

(Language

English)-

(for an HTML

document that

conforms

To web content

accessibility

guidelines)

Manually

Has Format 6.5 hasFormat Use this element to

identify another

resource that is

substantially the

same as the digital

object being

described by the

metadata but exists

in a different format.

Note that the

purpose of this

element is to give

the identifier of the

other resource in a

different format, not

to state the format

of the object being

described.

0..* string Optional data

element

http://upload.w

ikimedia.org/wi

kipedia/en/f/f3

/Europeana_log

o.png (A link to

another image

format of the

tiff image file

being

described).

Manually

Is Format Of 6.6 isFormatOf Use this element to

identify a related

resource that is

substantially the

same as the digital

object but in a

different format. Use

when there are

alternative formats

and it is not clear

which preceded the

0..* string Optional data

element

Europeana_log

o.tiff (where

the resource

being described

is a png image

file)

Manually

other.

Has Version 6.7 hasVersion A related object that

is a version, edition,

or adaptation of the

described object.

Changes in version

imply substantive

changes in content

rather than

differences in

format.

0..* LangString Optional data

element

The Sorcerer's

Apprentice

(Language

English) -

(for the

translation by

Edwin Zeydel of

Goethe's poem

Der

Zauberlehrling,

where the

metadata

record

is describing

the original).

Manually

Is Version Of 6.8 isVersionOf A related object of

which the described

object is a version,

edition, or

adaptation. Changes

in version imply

substantive changes

in content rather

than differences in

0..* LangString Optional data

element

opposite to 6.7 Manually

format.

Has Part 6.9 hasPart A related object that

is included either

physically or logically

in the described

object.

0..* string Optional data

element

Maps.added.22

231 - (The

identifier for

another map

which is part of

this one that is

being

described).

Manually

Is Referenced

By

6.10

isReferencedBy

A related object that

references, cites, or

otherwise points to

the described object.

0..* LangString Optional data

element

Till, Nicholas

(1994) Mozart

and the

Enlightenment:

Truth, Virtue

and Beauty in

Mozart’s

Operas, W. W.

Norton &

Company

(Language

English)

Manually

References 6.11 references A related object that

is referenced, cited,

or otherwise pointed

to by the described

0..* LangString Optional data

element

Security

Magazine pp 3-

12 (Language

Manually

object. English)

Is Replaced

By

6.12

isReplacedBy

A related object that

supplants, displaces,

or supersedes the

described object.

0..* string Optional data

element

http://dublinco

re.org/about/2

009/01/05/byla

ws/ (where the

resource

described is an

older version,

Say

http://dublinco

re.org/about/2

006/01/01/byla

ws/)

Manually

Replaces 6.13 replaces A related object that

is supplanted,

displaced, or

superseded by the

described object.

0..* string Optional data

element

opposite to

6.13

Manually

Is Required

By

6.14

isRequiredBy

A related object that

requires the

described object to

support its function,

delivery or

coherence.

0..* string Optional data

element

http://www.my

slides.com/mysl

ides.ppt

(where the

image being

described is

required for an

online show)

Manually

Requires 6.15 requires A related object that

is required by the

described object to

support its function,

delivery or

coherence.

0..* string Optional data

element

opposite to

6.14

Manually

 7. Collection This category

provides metadata

information for

logical groupings of

contributed CH

objects within a

museum.

Title 7.1 title The title of the

collection.

1..* LangString Mandatory

data element

TNHM mineral

collection

images

(Language

English)

Mineraalid Eesti

Loodusmuuseu

mi kogudest

(Language

Eesti)

Manually

Creator 7.2 creator This is the name of

the creator of the

collection.

1..* use a

consistent form

of the name

e.g.

Langstring Mandatory

data element

Rutt Hints Manually

Shakespeare,

William.

Subject 7.3 subject This is the subject of

the collection.

1..* LangString Mandatory

data element

Earth science

(Language

English)

Geology

(Language

English)

Mineralogy

(Language

English)

Geoteadused

(Language

Eesti)

Geoloogia

(Language

Eesti)

Mineraloogia

(Language

Eesti)

Manually

Description 7.4 description A description of the

collection.

0..* LangString Optional data

element

Mineral

specimen

images from

geological

Collections of

Estonian

Museum of

Natural History

Manually

(Language

English)

Mineraalide

pilte Eesti

Loodusmuuseu

mi

geoloogilistest

kogudest

(Language

Eesti)

Contributor 7.5 contributor The name of

contributors to the

collection. This could

be a person, an

organisation or a

service.

0..* use a

consistent form

of the name

e.g.

Shakespeare,

William.

LangString Optional data

element

 Manually

 7.3.1 role Kind of contribution. 1 Please consult

the MARC

Code List for

Relators,

(available at

id.loc.gov/voca

bulary/relators

.html) for

possible roles.

VocabularyTer

m

Mandatory

data element

IF 2.3

Contribute is

used.

Minimally, the

Contributor(s)

of the

collection

should be

described.

 Default “Annotator”

then manually

Type 7.6 type The type of the

collection as

recorded by the

content holder. Type

includes terms

describing general

categories, functions,

genres, or

aggregation levels

for content.

0..* Preferably the

values should

be taken from

the controlled

DC Type

vocabulary

(provided

Vocabulary)

LangString or

VocabularyTer

m

Optional data

element

Image Manually

identifier 7.7 identifier This is the identifier

for the collection

0..* string Optional data

element

http://nla.gov.a

u/nla.pic-

an7678346-1-v-

cd

Coverage 7.8 coverage Coverage is the

unqualified spatial or

temporal coverage of

the collection.

0..* LangString Optional data

element

Boston, MA

(Language

English)

 8. Europeana This category

provides various

Europeana related

metadata

information needed

for describing this

CHO object.

 8.1

dataProvider

The name or

identifier of the

organisation that

contributes this

object to Europeana.

This element is

specifically included

to allow the name of

the organisation who

supplies this object

to Europeana

indirectly via an

aggregator to be

recorded and

displayed in the

portal. The name

provided should be

the preferred form of

the name in the

language the

provider chooses as

the default language

for display in the

portal.

1 string Mandatory

data element.

Estonian

Museum of

Natural History/

Eesti

Loodusmuuseu

m

Automatic

 8.2 country The name of the

country of the data

provider or “Europe”

in the case of

1 string Mandatory

data element.

Estonia Automatic

Europe-wide projects

 8.3 provider The name of the

organization that

delivers data to

Europeana. This is

not necessarily the

institution that holds

or owns the original

or digitised object.

Where data is being

supplied by an

aggregator or project

this element is the

name of

aggregator/project.

1 string Mandatory

data element.

The Natural

Europe Project

Automatic

Licence 8.4 licenceUri Information about

copyright of the

digital object as

specified by 4.1 and

4.2. The value in this

element is a URL that

is constructed by

adding a code

indicating the

copyright status of

an object to the

domain name

1 The values

should be

taken from the

controlled

vocabulary

(provided)

URI Mandatory

data element.

http://creativec

ommons.org/p

ublicdomain/m

ark/1.0/

Manually

(europeana.eu

domain or the

creativecommons.or

g domain) where the

status is defined.

Example of Use for the ESE-CHO AP

The following indicates an example of the information kept for a digitised object following

the ESE-CHO AP.

<collection xmlns="http://www.natural-europe.eu/nhm/aip/"

xmldc:dc="http://purl.org/dc/elements/1.1/" xmldc:dcterms="http://purl.org/dc/terms/">

 <header>

 <id>b50a161b-560f-44cd-a4fa-a8c6e2da80d3</id>

 <createdOn>2011-06-22T17:53:01.215+03:00</createdOn>

 <createdBy>tnhm2</createdBy>

 <lastModifiedOn>2011-06-22T18:11:28.682+03:00</lastModifiedOn>

 <lastModifiedBy>tnhm2</lastModifiedBy>

 <status>IN_USE</status>

 </header>

 <metadata>

 <dc:title xml:lang="eng">TNHM paleontology collection images</dc:title>

 <dc:title xml:lang="est">Fossiile Eesti Loodusmuuseumi kogudest</dc:title>

 <dc:creator>Rutt Hints</dc:creator>

 <dc:subject xml:lang="eng">Earth science</dc:subject>

 <dc:subject xml:lang="eng">geology</dc:subject>

 <dc:subject xml:lang="eng">paleontology</dc:subject>

 <dc:subject xml:lang="eng">evolution</dc:subject>

 <dc:subject xml:lang="eng">preihistoric life</dc:subject>

 <dc:subject xml:lang="est">geoteadused</dc:subject>

 <dc:subject xml:lang="est">geoloogia</dc:subject>

 <dc:subject xml:lang="est">paleontoloogia</dc:subject>

 <dc:subject xml:lang="est">evolutsioon</dc:subject>

 <dc:subject xml:lang="est">eelajalooline elu</dc:subject>

 <dc:description xml:lang="eng">

 Fossil specimen images from geological collections of Estonian Museum of Natural

 History

 </dc:description>

 <dc:description xml:lang="est">

 Kivististe pilte Eesti Loodusmuuseumi geoloogilistest kogudest

 </dc:description>

 <contributor role="Creator" roleuri="http://id.loc.gov/vocabulary/relators/cre">

 Rutt Hints

 </contributor>

 <type typeuri="http://purl.org/dc/dcmitype/Image">Image</type>

 <dc:identifier>http://nla.gov.au/nla.pic-an7678346-1-v-cd</dc:identifier>

 </metadata>

 <records>

 <record>

 <header>

 <id>2e12848f-8d8b-4b22-bffd-455f496d78bb</id>

 <createdOn>2011-06-22T20:20:01.046+03:00</createdOn>

 <createdBy>tnhm2</createdBy>

 <lastModifiedOn>2011-06-23T16:41:23.254+03:00</lastModifiedOn>

 <lastModifiedBy>tnhm2</lastModifiedBy>

 <version>1.2.alpha</version>

 <status>EDITING_IN_PROGRESS</status>

 <access>PRIVATE</access>

 <logs>

 <log date="2011-06-22T20:20:01.046+03:00" actor="Tiit Hunt">

 CONTENT_PUBLISHING

 </log>

 </logs>

 </header>

 <metadata>

 <uri isLocal="false">http://geokogud.info/elm/specimen_image/g319/g319-

2_a.jpg</uri>

 <contextUri>http://geokogud.info/elm/specimen_image.php?id=690</contextUri>

 <resourceType>IMAGE</resourceType>

 <licenceUri>http://creativecommons.org/licenses/by-nc/3.0/</licenceUri>

 <sourceThumbnailUri>

http://147.27.41.103:8080/exist/rest//db/NHMRepository/content/thumbs/src/1klc1jqvrc9

bmhf7glun3oa7b9

 </sourceThumbnailUri>

 <dc:title xml:lang="lat">Mammuthus primigenius</dc:title>

 <classification uri="http://www.catalogueoflife.org/browse/tree/id/2362377">

 Mammuthus primigenius

 </classification>

 <contributor role="Photographer"

roleuri="http://id.loc.gov/vocabulary/relators/pht">

 Tiit Hunt

 </contributor>

 <subject uri="http://www.catalogueoflife.org/browse/tree/id/2362377">

 animalia

 </subject>

 <subject uri="http://www.catalogueoflife.org/browse/tree/id/2362754">

 chordate

 </subject>

 <subject uri="http://www.catalogueoflife.org/browse/tree/id/2362755">

 mammalia

 </subject>

 <dc:description xml:lang="eng">

http://147.27.41.103:8080/exist/rest/db/NHMRepository/content/thumbs/src/1klc1jqvrc9bmhf7glun3oa7b9
http://147.27.41.103:8080/exist/rest/db/NHMRepository/content/thumbs/src/1klc1jqvrc9bmhf7glun3oa7b9

 The molar tooth of woolly mammoth, dated back to about 10 000-10 500

 radiocarbon years is one of youngest mammoth finds in Europe.

 </dc:description>

 <dc:description xml:lang="est">

 Puurmani lähistelt leitud karvase mammuti purihammas on Euroopa üheks

 noorimaks mammutileiuks. Selle vanuseks on määratud 10 000-10 500

 radiosüsiniku aastat.

 </dc:description>

 <dc:publisher xml:lang="eng">Estonian Museum of Natural History</dc:publisher>

 <dc:publisher xml:lang="est">Eesti Loodusmuuseum</dc:publisher>

 <type xml:lang="eng">subfossil</type>

 <type xml:lang="est">subfossiil</type>

 <dc:format xml:lang="eng">image/jpeg</dc:format>

 <dc:identifier>

 http://geokogud.info/elm/specimen_image/g319/g319-2_a.jpg

 </dc:identifier>

 <dc:rights xml:lang="eng">

 Copyright © Estonian Museum of Natural History

 </dc:rights>

 <dc:rights xml:lang="est">Autoriõigus © Eesti Loodusmuuseum</dc:rights>

 <dc:source xml:lang="eng">The Natural Science Magazine pp 107-234</dc:source>

 <dcterms:issued>1920</dcterms:issued>

 <dcterms:alternative xml:lang="eng">woolly mammoth</dcterms:alternative>

 <dcterms:alternative xml:lang="est">karvane mammut</dcterms:alternative>

 <dcterms:extent xml:lang="eng">3000 × 2400 pixels</dcterms:extent>

 <dcterms:isPartOf xml:lang="eng">

 Collection of mammoth molars

 </dcterms:isPartOf>

 <dcterms:isPartOf xml:lang="est">Kogu mammuti purihambaid</dcterms:isPartOf>

 <dcterms:spatial xml:lang="eng">Puurmani</dcterms:spatial>

 <dcterms:spatial xml:lang="eng">Estonia</dcterms:spatial>

 <dcterms:spatial xml:lang="est">Puurmani</dcterms:spatial>

 <dcterms:spatial xml:lang="est">Eesti</dcterms:spatial>

 <dcterms:temporal xml:lang="eng">Pleistocene – Holocene</dcterms:temporal>

 <dcterms:temporal xml:lang="eng">Pleistotseen - Holotseen</dcterms:temporal>

 </metadata>

 </record>

 </records>

</collection>

http://geokogud.info/elm/specimen_image/g319/g319-2_a.jpg

	Table Of Contents
	List Of Tables
	List Of Figures
	Chapter 1
	Introduction

	Chapter 2
	Background technologies
	2.1. The Europeana Semantic Elements (ESE)
	2.2. Asynchronous JavaScript and XML (AJAX)
	2.3. Java Servlet
	2.4. XML
	2.4.1. XML Document, Elements and Attributes
	2.4.2. Well-formed and valid documents

	2.5. XML Schema
	2.5.1. Schema components
	2.5.2. Identity constraints
	2.5.3. Namespaces

	2.6. XML Beans
	2.7. Apache Lucene/Solr
	2.8. Resource Description Framework (RDF)
	2.8.1. Basic features of RDF

	2.9. Simple Knowledge Organization System (SKOS)
	2.10. Google Web Toolkit (GWT)
	2.10.1. GWT Components
	2.10.2. GWT Modes of Running
	2.10.3. Remote Procedure Calls (RPCs)
	2.10.4. Locales in GWT
	Internationalization Techniques
	Resource Bundles
	Constants
	Messages

	2.10.5. UIBinder framework

	Chapter 3
	Functional Specification
	3.1. Definitions
	3.2. Stakeholders
	3.3. Technical requirements
	3.4. Use cases

	Chapter 4
	The ESE-CHO Application Profile
	4.1. Data types
	4.2. Mandatory elements for a CH Object
	4.2.1. Title
	4.2.2. Description
	4.2.3. Language
	4.2.4. Subject
	4.2.5. Version
	4.2.6. Status
	4.2.7. Object URL
	4.2.8. Context URL
	4.2.9. Thumbnail URL
	4.2.10. Content Type
	4.2.11. Date
	4.2.12. Date Created
	4.2.13. Date Issued
	4.2.14. Spatial Coverage
	4.2.15. Data Provider
	4.2.16. Country
	4.2.17. Provider
	4.2.18. Licence
	4.2.19. Accessibility

	4.3. Recommended elements for a CH Object
	4.3.1. Classification
	4.3.2. Alternative Title
	4.3.3. Creator
	4.3.4. Contributor
	4.3.5. Publisher
	4.3.6. Type
	4.3.7. Coverage
	4.3.8. Temporal Coverage
	4.3.9. Is Part Of
	4.3.10. Source

	4.4. Optional elements for a CH Object
	4.4.1. Provenance
	4.4.2. Format
	4.4.3. Extent
	4.4.4. Medium
	4.4.5. Identifier
	4.4.6. Rights
	4.4.7. Table Of Contents
	4.4.8. Relation
	4.4.9. Conforms To
	4.4.10. Has Format
	4.4.11. Is Format Of
	4.4.12. Has Version
	4.4.13. Is Version Of
	4.4.14. Has Part
	4.4.15. Is Referenced By
	4.4.16. References
	4.4.17. Is Replaced By
	4.4.18. Replaces
	4.4.19. Is Required By
	4.4.20. Requires

	4.5. Elements supplied by Europeana for a CH Object
	4.5.1. Europeana language
	4.5.2. Europeana URI
	4.5.3. Europeana year

	4.6. Elements supplied for a collection of CH Objects
	4.6.1. Title
	4.6.2. Creator
	4.6.3. Subject
	4.6.4. Description
	4.6.5. Contributor
	4.6.6. Type
	4.6.7. Identifier
	4.6.8. Coverage

	Chapter 5
	System Architecture
	5.1. Client Side
	5.1.1. Model-View-Presenter (MVP)
	5.1.1.1. Model
	5.1.1.2. View
	5.1.1.3. Presenter
	5.1.1.4. Display Interface

	5.1.2. Event Bus
	5.1.3. Application Manager
	5.1.4. Multilinguality support
	5.1.5. RPC Async Interface

	5.2. Server Side
	5.2.1. Service Layer
	5.2.2. Business Logic Layer
	5.2.2.1. Persistency Management Module
	5.2.2.2. SIP Transformation Module
	5.2.2.3. Multimedia Manipulation Module
	5.2.2.4. Vocabulary Access Management Module
	5.2.2.5. Concurrency Management Module

	5.2.3. Data Layer
	5.2.3.1. CHO Repository
	5.2.3.2. Vocabulary Server

	Chapter 6
	GUI Design Specification
	6.1. Application Structure
	6.2. Usability heuristics
	 Visibility of system status
	 Match between System and the Real World
	 User Control and Freedom
	 Consistency and Standards
	 Error Prevention
	 Recognition rather than recall
	 Flexibility and efficiency of use
	 Aesthetic and minimalist design
	 Help users recognize, diagnose and recover from errors
	 Help and documentation

	Chapter 7
	Implementation
	7.1. Architecture
	7.1.1. Client Side
	7.1.1.1. Model
	7.1.1.2. View
	7.1.1.3. Presenter
	7.1.1.4. Multilinguality support

	7.1.2. Server-Side

	7.2. Graphic User Interface
	7.2.1. Logging in
	7.2.2. Start page
	7.2.3. Editing user profile
	7.2.4. Creating/Editing a new CHO Collection
	7.2.5. Creating/editing a new CHO Metadata record
	7.2.6. Import options
	7.2.6.1. Import Metadata
	7.2.6.2. Import ESE Metadata
	7.2.6.3. Import Media Objects

	7.2.7. Export options
	7.2.8. Administration
	7.2.8.1. Editing user accounts
	7.2.8.2. Creating user accounts

	Chapter 8
	Evaluation

	Chapter 9
	Related Work
	9.1. Collective Access
	9.2. Europeana.eu SIP Creator

	Chapter 10
	Conclusion

	Works Cited
	Appendix
	The ESE-CHO AP Full Element Set
	The ESE-CHO APPLICATION PROFILE

	Example of Use for the ESE-CHO AP

