
XS2OWL: A Formal Model and a System for enabling
XML Schema Applications to interoperate with OWL-

DL Domain Knowledge and Semantic Web Tools

Chrisa Tsinaraki1 and Stavros Christodoulakis1

1TUC/MUSIC, Technical University of Crete Campus, 73100 Kounoupidiana, Crete, Greece
{chrisa, stavros}@ced.tuc.gr

Abstract. The domination of XML in the Internet for data exchange has led to
the development of standards with XML Schema syntax for several application
domains. Advanced semantic support, provided by domain ontologies and se-
mantic Web tools like logic-based reasoners, is still very useful for many appli-
cations. In order to provide it, interoperability between XML Schema and OWL
is necessary so that XML schemas can be converted to OWL. This way, the
semantics of the standards can be enriched with domain knowledge encoded in
OWL domain ontologies and further semantic processing may take place. In or-
der to achieve interoperability between XML Schema and OWL, we have de-
veloped XS2OWL, a model and a system that are presented in this paper and
enable the automatic transformation of XML Schemas in OWL-DL. XS2OWL
also enables the consistent transformation of the derived knowledge (individu-
als) from OWL-DL to XML constructs that obey the original XML Schemas.

Keywords: Interoperability, Standards, XML Schema, OWL, Ontologies

1. Introduction

Web applications and services have formed an open environment, where the applica-
tions developed by different vendors interoperate on the basis of the emergent stan-
dards. The dominant data exchange standard in the Internet today is the eXtensible
Markup Language (XML) [2]. The XML documents are usually structured according
to schemas expressed in XML Schema Language [5] syntax. XML Schema uses XML
syntax, supports very rich structures and datatypes for XML documents and plays a
central role in the data exchange in the Internet. As a consequence, important stan-
dards in different application domains have been specified in XML Schema such as
the MPEG-7 [4] and the MPEG-21 [14] for multimedia, the IEEE LOM [10] and
SCORM [1] in e-learning, the METS [9] for Digital Libraries etc.

Advanced semantic support, though, would be very useful for several standard-
based applications that need to integrate domain knowledge expressed in domain
ontologies and perform semantic processing (including reasoning) within the con-
structs of the standards. As an example, consider the MPEG-7 based multimedia ap-
plications. MPEG-7 provides rich multimedia content description capabilities and has
been specified using XML Schema syntax, like many other standards. MPEG-7 based
services (e.g. retrieval, filtering etc.) would benefit from domain knowledge integra-

tion. MPEG-7 provides general-purpose constructs that could be used for domain
knowledge description [18], but the developers that are going to integrate domain
knowledge in MPEG-7 are likely to be more familiar with the Web Ontology Lan-
guage (OWL) [13] than with the domain knowledge description mechanisms of
MPEG-7. In addition, some applications of MPEG-7, like the (semi-)automatic mul-
timedia content annotation may greatly benefit from using logic-based reasoners for
OWL. As a consequence, the capability to work with the semantics of MPEG-7 ex-
pressed in OWL and integrated with OWL domain ontologies is beneficial for such
applications. Since other MPEG-7 applications may work with the XML Schema
version of MPEG-7, the derived knowledge should be converted back to standard
MPEG-7/XML constructs.

We present in this paper the XS2OWL transformation model that allows to trans-
form the XML Schema constructs in OWL, so that applications using XML Schema
based standards will be able to use the Semantic Web methodologies and tools.
XS2OWL also supports the conversion of the OWL-based constructs back to the
XML Schema based constructs in order to maintain the compatibility with the XML
schema versions of the standards. XS2OWL has been implemented as an XML
Stylesheet Transformation Language (XSLT) [7] stylesheet and transforms every
XML Schema based standard in an OWL-DL Main Ontology. This way, the con-
structs of the standard become first class Semantic Web objects and may be integrated
with domain knowledge expressed as OWL domain ontologies. In addition, all the
OWL-based Semantic Web tools, including reasoners, can be used with the standard-
based descriptions. In addition, a Mapping Ontology is generated for each XML
Schema, which allows encoding all the knowledge needed to transform the individu-
als generated or added later on to the main ontology back to XML syntax valid ac-
cording to the original XML Schema.

The research conducted in the support of interoperability between XML Schema
and OWL is limited. We had observed the need for such support for the MPEG-7
standard in the context of the DS-MIRF framework [16, 17, 18]. In order to achieve it,
we first defined manually an Upper OWL-DL ontology capturing the MPEG-7 Mul-
timedia Description Schemes (MDS) [12] and the MPEG-21 Digital Item Adaptation
(DIA) Architecture [11]. This way, domain knowledge expressed in OWL domain
ontologies could be integrated with the semantics of the standards captured in the
Upper ontology, as was done with ontologies for soccer and Formula 1. Finally, we
developed a set of transformation rules for transforming the OWL individuals that
describe the multimedia content and have been defined using the Upper ontology and
the domain ontologies back to the original MPEG-7/21 constructs. The transformation
rules rely on a mapping ontology that systematically captures the semantics of
MPEG-7/21 that cannot be captured in the Upper ontology. This work is an important
motivating example for the need of the general-purpose mechanism described here.

The automatic transformation of XML Schema constructs to OWL constructs has
been proposed in [6]. According to this methodology, an XML Schema is transformed
to an OWL-Full ontology that partially captures the XML Schema semantics. This
way, information is lost during the transformation from XML Schema to OWL, and
no support is provided in order to transform OWL individuals obeying the ontologies
produced back to XML syntax valid according to the original XML Schemas. Finally
some XML Schema construct transformations of to OWL in [6] do not follow closely

the XML Schema semantics. The XS2OWL model presented in this paper allows
automatically transforming XML Schema constructs to OWL-DL constructs (not
OWL-Full) without loosing any information. This way, computational completeness
and decidability of reasoning are guaranteed in the OWL ontologies produced and
back transformations are supported.

The rest of the paper is structured as follows: In section 2 we provide background
information. The proposed model for transforming XML Schema constructs in OWL-
DL is presented in section 3. The mapping ontologies that represent the XML Schema
semantics that cannot be directly transformed in OWL-DL are described in section 4.
In section 5 we present the realization of the XS2OWL model, so that the transforma-
tions are carried out automatically. The paper conclusions are presented in section 6.

2. Background

In this section we present the background information needed in other parts of the
paper. In particular, we present in brief the XML Schema Language and the Web On-
tology Language (OWL).

The XML Schema Language. The XML Schema Language [5] allows the defini-
tion of classes of XML documents using XML syntax and provides datatypes and rich
structuring capabilities. An XML document is composed of elements, with the root
element delimiting the beginning and the end of the document. Reuse of the element
definitions is supported by the substitutionGroup attribute, which states that the cur-
rent element is a specialization of another element. The elements may either have a
predefined order (forming XML Schema sequences) or be unordered (forming XML
Schema choices). Both sequences and choices may be nested. The minimum and
maximum number of occurrences of the elements, choices and sequences are speci-
fied, respectively, in the minOccurs and maxOccurs attributes (absent “minOccurs”
and/or “maxOccurs” attributes correspond to values of 1). Reusable complex struc-
tures, combining sequences and choices, may be defined as model groups.

The XML Schema language allows for the definition of both complex and simple
elements. Complex elements belong to complex types, which may include other ele-
ments and carry attributes that describe their features. Simple elements belong to
simple types, which are usually defined as restrictions of the basic datatypes provided
by XML Schema (i.e. strings, integers, floats, tokens etc.). Simple types can neither
contain other elements nor carry attributes. Inheritance and constraints are supported
for both simple and complex types. Sets of attributes that should be used simultane-
ously may form attribute groups. Default and fixed values may be specified for XML
Schema attributes and simple type elements.

The top-level XML Schema constructs (attributes, elements, simple and complex
types, attribute and model groups) have unique names (specified in their “name”
attribute), while the nested types and groups are unnamed. All the XML Schema
constructs may have unique identifiers (specified in their “id” attribute). The top-level
constructs may be referenced by other constructs using the “ref” attribute.

The Web Ontology Language (OWL). The Web Ontology Language (OWL)
[13] is the dominant standard in ontology definition. OWL has followed the descrip-

tion logics paradigm and uses RDF (Resource Description Framework)/RDFS (Re-
source Description Framework Schema) [8, 3] syntax. Three OWL species of increas-
ing descriptive power have been specified: OWL-Lite, which is intended for light-
weight reasoning but has limited expressive power, OWL-DL, which provides de-
scription logics expressivity and guarantees computational completeness and decida-
bility of reasoning, and OWL-Full, which has more flexible syntax than OWL-DL, but
does not guarantee computational completeness and decidability of reasoning.

The basic functionality provided by OWL is: (a) Import of XML Schema
Datatypes, that represent simple types extending or restricting the basic datatypes (e.g.
ranges etc.). The imported datatypes have to be declared, as RDFS datatypes, in the
ontologies they are used; (b) Definition of OWL Classes, organized in subclass hierar-
chies, for the representation of sets of individuals sharing some properties. Complex
OWL classes can be defined via set operators (intersection, union or complement of
other classes) or via direct enumeration of their members; (c) Definition of OWL
Individuals, essentially instances of the OWL classes, following the restrictions im-
posed on the class in which they belong; and (d) Definition of OWL Properties, which
may form property hierarchies, for the representation of the features of the OWL class
individuals. Two kinds of properties are provided by OWL: (i) Object Properties,
which relate individuals of one OWL class (the property domain) with individuals of
another OWL class (the property range); and (ii) Datatype Properties, which relate
individuals belonging to one OWL class (the property domain) with values of a given
datatype (the property range). Restrictions may be defined on OWL class properties,
including type, cardinality and value restrictions. OWL classes, properties and indi-
viduals are identified by unique identifiers specified in their “rdf:ID” attributes.

3. Transformation of XML Schema Constructs to OWL-DL

We present in this section a model for the direct transformation of the XML Schema
constructs in OWL-DL. The result of the transformation of a source XML Schema is
a main ontology, an OWL-DL ontology that captures the semantics of the XML
Schema constructs. The transformations of the individuals XML Schema constructs
are presented in the next paragraphs.

Simple XML Schema Datatypes. OWL does not directly support the definition
of simple datatypes; it only allows importing simple datatypes. Existing XML
Schema datatypes may be used in OWL ontologies if they have been declared in
them. XS2OWL organizes all the simple XML Schema datatype definitions in the
“datatypes” XML Schema and for each of them it generates an OWL datatype decla-
ration. Let st(name, id, body) be an XML Schema simple datatype, where body is the
body of the definition of st, id is the (optional) identifier of st and name is the name of
st. st is transformed into: (a) The st'(name', id, body) simple datatype, which is stored
in the “datatypes” XML Schema; and (b) the dd(about, is_defined_by, label) datatype
declaration in the main ontology.

The st' simple type has the same body and id with st, while name' is formed as fol-
lows: If st is a top-level simple type, name' has the name value. If st is a simple type
nested in the ae XML Schema construct (that may be an attribute or an element),

name' has the value (a) id if st has a non-null identifier; and (b) the result of concate-
nate(ct_name, '_', ae_name, '_UNType') if st has a null identifier, where: (i) The con-
catenate(…) algorithm takes as input an arbitrary number of strings and returns their
concatenation; and (ii) ct_name is the name of the complex type containing ae. If ae
is a top-level attribute or element, ct_name has the ‘NS’ string as value.; and (iii)
ae_name is the name of the property that represents ae.

The dd datatype declaration carries the following semantics: (a) about is the iden-
tifier referenced by the datatype declaration and is of the form concate-
nate(url,name'), where url is the URL of the “datatypes” XML Schema; (b)
is_defined_by specifies where the datatype definition is located and has the url value;
and (c) label is the label of dd and has name' as value.

As an example, consider the nested simple datatype of Fig. 1, which is defined in
the “a1” attribute of the “ct1” complex type. It is transformed to the top-level simple
datatype shown in Fig. 2, and the OWL datatype declaration shown in Fig. 3.

 <xs:complexType name="ct1"><xs:simpleContent>
<xs:extension base="xs:integer">
<xs:attribute name="a1">
<xs:simpleType>
<xs:restriction base="xs:string"/>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

Fig. 1. Definition of a nested simple datatype

 <simpleType name="ct1_a1_UNType"><restriction base="xs:string"/>
</simpleType>

Fig. 2. Top-level simple datatype representing the nested datatype of Fig. 1

 <rdfs:Datatype rdf:about="&datatypes;ct1_a1_UNType"><rdfs:isDefinedBy rdf:resource="&datatypes;"/>
<rdfs:label>ct1_a1_UNType</rdfs:label>
</rdfs:Datatype>

Fig. 3. OWL Declaration of the simple datatype of Fig. 2

Attributes. XML Schema attributes describe features with values of simple type.
The OWL construct that can represent such features is the datatype property. Thus,
XS2OWL transforms the XML Schema attributes into OWL datatype properties.

Let a(name, aid, type, annot, ct_name, fixed, default) be an XML Schema attrib-
ute, where name is the name of a, aid is the identifier of a, type is the type of a, annot
is an (optional) annotation element of a, ct_name is the name of the complex XML
Schema type c_type in the context of which a is defined (if a is a top-level attribute,
ct_name has the null value), fixed is the (optional) fixed value of a and default is the
(optional) default value of a. XS2OWL, transforms a into the OWL datatype property
dp(id, range, domain, label, comment), where: (a) id is the unique rdf:ID of dp and
has concatenate(name, ‘__’, type) as value; (b) range is the range of dp and has type
as value; (c) domain is the domain of dp and has ct_name as value; (d) label is the
label of dp and has name as value; and (e) comment is the textual description of dp

and has annot as value. If any of the features of a is absent, the corresponding feature
of dp is also absent. Note that: (a) If a fixed value of a is specified, it is represented as
a value restriction in the definition of the OWL class c that represents c_type; and (b)
If a default value of a is specified, it cannot be represented in the main ontology.

As an example, consider the “a1” attribute, shown in Fig. 1, which is transformed
to the OWL datatype property shown in Fig. 4.

 <owl:DatatypeProperty rdf:ID="a1__ct1_a1_UNType"><rdfs:domain rdf:resource="#ct1"/>
<rdfs:range rdf:resource="&datatypes;ct1_a1_UNType"/>
<rdfs:label>a1</rdfs:label>
</owl:DatatypeProperty>

Fig. 4. The OWL datatype property representing the “a1” attribute of Fig. 1

Elements. XML Schema elements represent features of complex XML Schema
types and are transformed into OWL properties: The simple type elements are repre-
sented as OWL datatype properties and the complex type elements are represented as
OWL object properties. Let e(name, type, eid, annot, ct_name, substitution_group) be
an XML Schema element, where name is the name of e, eid is the identifier of e, type
is the type of e, annot is an annotation element of e, ct_name is the name of the com-
plex XML Schema type c_type in the context of which e is defined (if e is a top-level
attribute, ct_name has the null value) and substitution_group is an (optional) element
being extended by e. We represent e in OWL as a (datatype or object) property p(id,
range, domain, label, comment, super_property), where: (a) id is the unique rdf:ID of
p and has concatenate(name, ‘__’, type) as value; (b) range is the range of p and has
type as value; (c) domain is the domain of p and has ct_name as value; (d) label is the
label of p and has name as value; (e) comment is the textual description of p and has
annot as value; and (f) super_property is the specification of the property specialized
by p and has substitution_group as value.

<xs:element name="e" type="c_t2"/>

Fig. 5. Definition of the “e” element, nested in the complex type “c_t1”

 <owl:ObjectProperty rdf:ID="e__c_t2"><rdfs:domain rdf:resource="#c_t1"/>
<rdfs:range rdf:resource="#c_t2"/>
<rdfs:label>e</rdfs:label>
</owl:ObjectProperty>

Fig. 6. The OWL object property representing the “e” element of Fig. 5

As an example, consider the “e” element, shown in Fig. 5, of type “c_t2”, defined
in the context of the complex type “c_t1”. The “e” element is transformed to the
OWL object property shown in Fig. 6.

Complex Types. The XML Schema complex types represent classes of XML in-
stances that have common features, just as the OWL classes represent sets of indi-
viduals with common properties. Thus XS2OWL transforms the XML Schema com-
plex types into OWL classes. Let ct(name, cid, base, annot, attributes, sequences,
choices) be an XML Schema complex type, where: (a) name is the name of ct; (b) aid
is the identifier of ct; (c) base is the (simple or complex) type extended by ct; (d)

annot is an annotation element of ct; (e) attributes is the list of the attributes of ct; (f)
sequences is the list of the ct sequences; and (g) choices is the list of the ct choices.

If ct extends a complex type, XS2OWL transforms it to the OWL class c(id, su-
per_class, label, comment, value_restrictions, cardinality_restrictions), where: (a) id
is the unique rdf:ID of c and has name as value if ct is a top-level complex type. If ct
is a complex type nested within the definition of an element e, name is a unique,
automatically generated name of the form concatenate(ct_name, '_', element_name,
'_UNType'), where ct_name is the name of the complex type containing e and ele-
ment_name is the name of e. If e is a top-level element, ct_name has the ‘NS’ value;
(b) super_class states which class is extended by ct and has base as value; (c) label is
the label of ct and has name as value; (d) comment is the textual description of ct and
has annot as value; (e) value_restrictions is the set of the value restrictions holding
for the properties of c; and (f) cardinality_restrictions is the set of the cardinality
restrictions assigned to the properties representing the ct attributes and the ct se-
quence/choice elements.
 <owl:Class rdf:ID="ct1"><rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#a1__ct1_a1_UNType"/>
<owl:maxCardinality rdf:datatype="&xsd;integer">1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#content__xs_integer"/>
<owl:cardinality rdf:datatype="&xsd;integer">1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:label>ct1</rdfs:label>
</owl:Class>
<owl:DatatypeProperty rdf:ID="content__xs_integer">
<rdfs:domain rdf:resource="#ct1"/>
<rdfs:range rdf:resource="&xs;integer"/>
</owl:DatatypeProperty>
Fig. 7. OWL class representing the “ct1” complex type of Fig. 1

If ct extends a simple type, XS2OWL transforms it to the OWL class c(id, label,
comment, value_restrictions, cardinality_restrictions), with the same semantics with
the classes representing complex types that extend complex types on the correspond-
ing items. The extension of the simple type is represented by the datatype property
ep(eid, erange, edomain) of cardinality 1, where: (a) eid is the unique rdf:ID of ep and
has concatenate(base, ‘_content’) as value; (b) range is the range of ep and has base
as value; and (c) domain is the domain of ep and takes as value the id of c.

The attributes and the elements that are defined or referenced in ct are transformed
to the corresponding OWL-DL constructs.

As an example, consider the complex type “ct1”, shown in Fig. 1. The “ct1” com-
plex type is represented by the “ct” OWL class, shown in Fig. 7, together with the
“content__xs_integer” datatype property, which states that “ct1” is an extension of
xs:integer.

Sequences and Choices. The XML Schema sequences and choices essentially are
XML element containers, defined in the context of complex types and model groups.
The main difference between sequences and choices is that the sequences are ordered,

while the choices are unordered. XS2OWL transforms both the sequences and the
choices to unnamed OWL-DL classes featuring complex cardinality restrictions on
the sequence/choice items (elements, sequences and choices) and places them in the
definition of the classes that represent the complex types where the sequences/choices
are referenced or defined.

The lower bound of the minimum cardinality of the construct that represents a se-
quence/choice item has the value i_min_occurs*s_min_occurs and the upper bound of
the construct maximum cardinality has the value i_max_occurs*s_max_occurs,
where: (a) i_min_occurs is the value of the “minOccurs” attribute of the item; (b)
s_min_occurs is the value of the “minOccurs” attribute of the sequence; (c)
i_max_occurs is the value of the “maxOccurs” attribute of the item; and (d)
s_max_occurs is the value of the “maxOccurs” attribute of the sequence. In addition,
the cardinality of the sequence/choice items must always be a multiple in the range
[i_min_occurs – i_max_occurs].

Sequence items must appear in their order. Thus, the sequences are transformed to
unnamed classes, formed as the intersection of the cardinality restrictions of their
items. Notice that the exact sequence cardinalities cannot be computed when a se-
quence item is contained in a sequence with unbounded maximum number of occur-
rences and the item has no maximum cardinality restriction. In addition, information
regarding the sequence element ordering cannot be represented in OWL.

As an example, consider the sequence shown in Fig. 8, which is defined in the
context of the complex type “c_t1”. The sequence is represented, in the “c_t1” class
definition, by the unnamed class shown in Fig. 9.

 <xs:sequence minOccurs="2" maxOccurs="2"><xs:element name="e1" type="xs:string"/>
<xs:element name="e2" type="xs:string" maxOccurs="3"/>
</xs:sequence>

Fig. 8. Sequence defined in the context of the Complex Type “c_type1”

 <owl:Class><owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#e1__xs_string"/>
<owl:cardinality rdf:datatype="&xsd;integer">2</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#e2__xs_string"/>
<owl:minCardinality

rdf:datatype="&xsd;integer">2</owl:minCardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#e2__xs_string"/>
<owl:maxCardinality

rdf:datatype="&xsd;integer">6</owl:maxCardinality>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

Fig. 9. OWL Representation of the sequence shown in Fig. 8

The choice items may appear at any order. Thus, the choices are transformed to
unnamed classes, formed as the union of the allowed combinations of the cardinality
restrictions of the choice elements. Notice that the exact choice cardinalities cannot be

computed when a choice item is contained in a choice with unbounded maximum
number of occurrences.

The unnamed classes that represent XML Schema sequences and choices are pro-
duced using the algorithms outlined above, that are available at [15]. It must be noted
that, if the maximum number of occurrences of a sequence/choice has a large value
(but is not unbounded), the manual generation of the restrictions is tedious and time-
consuming and thus becomes error-prone and practically impossible.

References. XML Schema attributes, attribute groups, elements and model groups
that are referenced in complex type definitions are transformed into OWL-DL
datatype (if they are or contain attributes or simple type elements) or object (if they
contain complex type elements) properties. Let ref(ae) be a reference, in a complex
type ct, to the ae XML attribute or element. The reference is represented by the
(datatype or object) property rp(id, domain), where id is the rdf:ID of rp and has as
value the value of the rdf:ID of the property that represents ae, and domain is the
domain of rp and has the rdf:ID of the OWL class c that represents ct as value.

4. Mapping Ontologies

In section 3 we mentioned that some XML Schema semantics cannot be represented
in OWL during the XML Schema to OWL transformation. These semantics do not
affect the domain ontologies that may extend the main ontology and they are not used
by the OWL reasoners; however, they are important when the individuals defined
according to the main ontology have to be transformed back to valid XML descrip-
tions compliant with the source XML Schema. In order to support this functionality,
we have defined a model that allows transforming the OWL constructs back to XML
Schema constructs. This model captures the XML Schema semantics that cannot be
represented in OWL and is expressed as an OWL-DL ontology, the OWL2XMLRules
Ontology (available at http://elikonas.ced.tuc.gr/ontologies/OWL2XMLRules/
OWL2XMLRules). For a particular XML Schema that is transformed to OWL-DL,
XS2OWL generates a Mapping Ontology that extends the OWL2XMLRules ontology
with individuals and represents the semantics of the schema that are lost during the
transformation to OWL.

In the following paragraphs, we present the classes of the OWL2XMLRules on-
tology as well as the model for the generation of individuals of the classes of the
OWL2XMLRules ontology during the transformation of specific XML Schemas.

DatatypePropertyInfoType Class. It captures information about the datatype
properties lost during the XML Schema to OWL transformation. This information
includes the names of the XML constructs (elements, attributes) transformed to the
datatype properties, the default values and the origins of the datatype properties, since
an OWL datatype property may be the result of the transformation of an attribute, an
element or it may state that a complex type extends a simple type.

Let ae(name, ae_id, c_type, default) be an attribute or a simple type element,
where name is the name of ae, ae_id is the identifier of ae, c_type is the complex type
in which ae has been defined and default is the default value of ae. ae is transformed
into the DatatypePropertyInfoType individual dpi(id, did, xml_name, dpi_type,

def_val), where: (a) id is the unique rdf:ID of dpi and has concatenate(ct_name, ‘_’,
name, ‘__’, type) as value, where ct_name is the name of the class that represents
c_type in the main ontology; (b) did is the rdf:ID of the dp datatype property that
represents ae in the main ontology; (c) xml_name is the name of ae and has name as
value; (d) dpi_type represents the construct which has been mapped to dp and has the
value ‘Attribute’ if ae is an attribute and the value and ‘Element’ if ae is an element;
and (e) def_val represents the default value of ae and has default as value.

If a datatype property dp states that a complex type extends a simple type, a
DatatypePropertyInfoType individual dpi(id, did, dpi_type) is generated for dp, where
id and did have the semantics defined above and dpi_type has the ‘Extension’ value.

ElementInfoType Class. It captures information about the XML Schema ele-
ments that is lost during the XML Schema to OWL transformation. This information
includes the names of the elements and, if they are parts of sequences, their ordering.

Let e(eid, name, c_type, default, min, max, pos) be an element, where name is the
name of e, eid is the identifier of e, c_type is the complex type in which e has been
defined, default is the default value of e, min is the minimum number of occurrences
of e, max is the maximum number of occurrences of e and pos is the position of e if e
is a sequence element. e is represented in the mapping ontology by the ElementInfo-
Type individual ei(id, pid, xml_name, def_val, min_occ, max_occ, position), where:
(a) id is the unique rdf:ID of ei and has concatenate(ct_name, ‘_’, name, ‘__’, type) as
value, where ct_name is the name of the class that represents c_type in the main on-
tology; (b) pid is the rdf:ID of the p property that represents e in the main ontology;
(c) xml_name is the name of e and has name as value; (d) dpi_type represents the
construct which has been transformed to p and has the ‘Element’ value; (e) def_val
represents the default value of e and has default as value; (f) min_occ represents the
minimum number of occurrences of e and has min as value; (g) max_occ represents
the maximum number of occurrences of e and has max as value; and (h) position
represents the position of e if e is a sequence element.

ComplexTypeInfoType Class. It captures information lost during the XML
Schema to OWL transformation about a complex type that has name as name. This
information includes information about the datatype properties associated with the
corresponding OWL class in the main ontology and the cardinality and ordering of the
elements contained in the complex type.

Let ct(name, ct_id, att_list, seq_list, cho_list) be a complex type, where name is
the name of ct, ct_id is the identifier of ct, att_list is the list of the ct attributes,
seq_list is the list of the ct sequences and cho_list is the list of the ct choices. ct is
represented in the mapping ontology by the ComplexTypeInfoType individual ct(id,
type_id, dpi_list, container_list), where: (a) id is the unique rdf:ID of ct and has name
as value; (b) type_id represents the identifier of the OWL class c that represents ct in
the main ontology; (c) dpi_list is the list of the representations of the datatype proper-
ties of c; and (d) container_list is the list of the representations of the sc containers.

ChoiceType and SequenceType Classes. They capture, respectively, information
about the exact cardinalities and the structure of XML Schema choices and sequences
that is lost during the XML Schema to OWL transformation.

Let sc(sc_id, c_type, min, max, elements) be a sequence or choice, where sc_id is
the identifier of sc, c_type is the complex type in which sc has been defined, min is
the minimum number of occurrences of sc, max is the maximum number of occur-

rences of sc and elements is the list of the elements of sc. We represent sc in the map-
ping ontology by the (SequenceType if sc is a sequence, ChoiceType if sc is a choice)
individual st(id, min_occ, max_occ, e_rep), where: (a) id is the unique rdf:ID of st and
has concatenate(ct_name, ‘__’, i) as value, where ct_name is the name of the class
that represents c_type in the main ontology and i is the index of sc in c_type; (b)
min_occ represents the minimum number of occurrences of sc and has min as value;
(c) max_occ represents the maximum number of occurrences of sc and has max as
value; and (d) e_rep is the list of the representations of the elements of sc.

As an example, consider the complex type “ct1”, shown in Fig. 1. ct1 is repre-
sented in the mapping ontology as shown in Fig. 10.

 <ox:XSDComplexTypeInfoType rdf:ID="ct1"><ox:typeID>ct1</ox:typeID>
<ox:DatatypePropertyInfo>
<ox:DatatypePropertyInfoType rdf:ID="ct1_a1__ct1_a1_UNType">
<ox:datatypePropertyID>a1__ct1_a1_UNType</ox:datatypePropertyID>
<ox:XMLConstructID>a1</ox:XMLConstructID>
<ox:datatypePropertyType>Attribute</ox:datatypePropertyType>
</ox:DatatypePropertyInfoType>
</ox:DatatypePropertyInfo>
<ox:DatatypePropertyInfoType rdf:ID="ct1_content__xs_integer">
<ox:datatypePropertyID>content__xs_integer</ox:datatypePropertyID>
<ox:datatypePropertyType>Extension</ox:datatypePropertyType>
</ox:DatatypePropertyInfoType>
</ox:XSDComplexTypeInfoType>

Fig. 10. Representation of the complex type “ct” of Fig. 1 in the mapping ontology

5. Realization and Evaluation of the XS2OWL Model

We present in this section the design and implementation of the XS2OWL system,
which transforms automatically XML Schemas into OWL-DL ontologies and gener-
ates their mapping ontologies. According to the XS2OWL model, an XML Schema is
transformed into: (a) A main OWL-DL ontology that directly captures the XML
Schema semantics using OWL-DL constructs; (b) A mapping OWL-DL ontology that
systematically captures the semantics of the XML Schema constructs that cannot be
captured in the main ontology; and (c) A datatypes XML Schema containing the
simple XML Schema datatypes defined in the source XML Schema, which are im-
ported in the main ontology.

The XS2OWL transformation model has been implemented as an XSLT
stylesheet. The information flow during the transformation is shown in Fig. 11. As
shown in Fig. 11, the source XML Schema and the XS2OWL stylesheet are given as
input to an XSLT processor, and the output comprises of the main ontology, the map-
ping ontology and the datatypes XML Schema.

XSLT

Processor

XS2OWL XSLT

XML Schema File
Mapping
Ontology

Simple XML
Schema Datatypes

Main OWL-DL
Ontology

Fig. 11. The Information Flow in XS2OWL

In order to acquire extensive empirical evidence, we applied XS2OWL to several
very large and well-accepted standards expressed in XML Schema: The MPEG-7
Multimedia Description Schemes (MDS) and the MPEG-21 Digital Item Adaptation
(DIA) Architecture in the multimedia domain, the IEEE LOM and the SCORM in the
e-learning domain and the METS standard for Digital Libraries. The XML Schema
constructs of these standards have been automatically converted to OWL for each of
those standards. We then produced individuals following the ontologies. Finally, we
converted the individuals to XML syntax, valid with respect to the source XML
Schemas. The transformations were successful for these standards and we found that
in all cases the semantics of the standards were fully captured in the main and map-
ping ontologies generated by the XS2OWL system.

6. Conclusions

We have presented in this paper the XS2OWL formal model that allows to automati-
cally transform XML Schemas into OWL-DL ontologies. This transformation allows
domain ontologies in OWL to be integrated and logic-based reasoners to be used for
various applications, as for example for knowledge extraction from multimedia data.
XS2OWL allows the conversion of the generated OWL information back to XML.
We have presented also the XS2OWL system that implements the XS2OWL model.
We have used the implemented system to validate our approach with a number of
well-accepted and extensive standards expressed in XML Schema. The automatically
created ontologies have been found to accurately capture the semantics of the source
XML Schemas.

Acknowledgments. The work presented here was partially funded in the scope of the
DELOS II Network of Excellence in Digital Libraries (IST – Project Record #26059).

7. References

1. ADL Technical Team: Sharable Content Object Reference Model (SCORM), 2004.
2. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., Cowan, J. (eds.):

Extensible Markup Language (XML) 1.1. W3C Recommendation, 2006.
(http://www.w3.org/TR/xml11/).

3. Brickley, D., Guha, R. V. (eds.): RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation, 2004. (http://www.w3.org/TR/rdf-schema).

4. Chang, S.F., Sikora, T., Puri, A.: Overview of the MPEG-7 standard. In IEEE Transactions
on Circuits and Systems for Video Technology 11:688–695, 2001.

5. Fallside, D., Walmsley, P. (eds.): XML Schema Part 0: Primer. W3C Recommendation,
2001. (http://www.w3.org/TR/xmlschema-0/).

6. García, R., Celma, O.: Semantic Integration and Retrieval of Multimedia Metadata. In the
proceedings of the Semannot'05 Workshop, 2005.

7. Kay, M. (ed.) : XSL Transformations (XSLT) Version 2.0. W3C Recommendation, 2007.
(http://www.w3.org/TR/xslt20/).

8. Manola, F., Milles, E. (eds.): RDF Primer. W3C Recommendation, 2004.
(http://www.w3.org/TR/rdf-primer).

9. METS: Metadata Encoding and Transmission Standard (METS) Official Website.
(http://www.loc.gov/standards/mets/).

10. IEEE LTSC 2002: IEEE 1484.12.1-2002 – Learning Object Metadata Standard.
(http://ltsc.ieee.org/wg12/).

11. ISO/IEC: 21000-7:2004 – Information Technology – Multimedia Framework (MPEG-21) –
Part 7: Digital Item Adaptation, 2004.

12. ISO/IEC: 15938-5:2003 – Information Technology –Multimedia content description inter-
face – Part 5: Multimedia description schemes. First Edition, ISO/MPEG N5845, 2003.

13. McGuinness, D. L., van Harmelen, F. (eds.): OWL Web Ontology Language: Overview.
W3C Recommendation, 2004. (http://www.w3.org/TR/owl-features).

14. Pereira, F.: The MPEG-21 standard: Why an open multimedia framework?. In the Proceed-
ings of the 8th IDMS, LNCS 2158, Lancaster, September 2001, pp. 219–220.

15. Tsinaraki C. and Christodoulakis S. 2007. XS2OWL: A Formal Model and a System for
enabling XML Schema Applications to interoperate with OWL-DL Domain Knowledge and
Semantic Web Tools. Technical Report, http://www.music.tuc.gr/XS2OWL.pdf.

16. Tsinaraki C., Polydoros P. and Christodoulakis S.: Interoperability support for Ontology-
based Video Retrieval Applications. In the Proceedings of the CIVR 2004, pp. 582-591.

17. Tsinaraki C., Polydoros P. and Christodoulakis S.: Integration of OWL ontologies in
MPEG-7 and TVAnytime compliant Semantic Indexing. In Proc. of the Conference of Ad-
vanced Information Systems Engineering (CaiSE) 2004, pp. 398-413.

18. Tsinaraki, C., Polydoros, P., Kazasis, F., Christodoulakis S.: Ontology-based Semantic
Indexing for MPEG-7 and TV-Anytime Audiovisual Content. In Multimedia Tools and Ap-
plication Journal (MTAP), 26:299-325, 2005.

