
Towards a Mediator based on OWL and SPARQL

Konstantinos Makris, Nikos Bikakis, Nektarios Gioldasis, Chrisa Tsinaraki, Stavros

Christodoulakis

Technical University of Crete, Department of Electronic and Computer Engineering
Laboratory of Distributed Multimedia Information Systems & Applications (MUSIC/TUC)

University Campus, 73100, Kounoupidiana Chania, Greece
{makris, nbikakis, nektarios, chrisa, stavros}@ced.tuc.gr

Abstract. We propose a framework that supports a federated environment

based on a Mediator Architecture in the Semantic Web. The Mediator supports

mappings between the OWL Ontology of the Mediator and the other ontologies

in the federated sites. SPARQL queries submitted to the Mediator are

decomposed and reformulated to SPARQL queries to the federated sites. The

evaluated results return to the Mediator. In this paper we describe the mappings

definition and encoding. We also discuss briefly the reformulation approach

that is used by the Mediator system that we are currently implementing.

Keywords: Information Integration, Semantic Web, Interoperability, Ontology

Mapping, Query Reformulation, SPARQL, OWL.

1 Introduction

The Semantic Web community has developed over the last few years standardized
languages for describing ontologies and for querying OWL [1] based information

systems. Database implementations are striving to achieve high performance for the

stored semantic information. In the future large databases, RDF [2] data will be

managed by independent organizations. Federated architectures will need to access

and integrate information from those resources.

We consider in this paper a Mediator based architecture for integrating information

from federated OWL knowledge bases. The Mediator uses mappings between the

OWL Ontology of the Mediator and the Federated site ontologies. SPARQL [3]

queries over the Mediator are decomposed and reformulated to be submitted over the

federated sites. The SPARQL queries are locally evaluated and the results return to

the Mediator site.
We describe in this paper the mappings supported by our architecture as well as the

SPARQL reformulation algorithms supported by our system.

Ontology Mapping in general, is a topic that has been studied extensively in the

literature [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24]. However, very few

publications, in our knowledge, examine the problem of describing the mapping types

that can be useful for the SPARQL query reformulation process and how they should

be exploited. Only [7] deals with this subject but not directly, since it describes which

mapping types cannot be used in the reformulation process.

Query Reformulation is a frequently used approach in Query Processing and

especially in Information Integration environments. Much research has been done in

the area of query reformulation; Up to now, though, limited studies have been made

in the field of SPARQL query reformulation related to posing a query over different

datasets. Some relevant work has been published for approximate query

reformulation, based on an ontology mapping specification [12], using a part of

OWL-DL, without specifying a particular query language. In addition, many

approaches that deal with optimization [8, 9], decomposition [4, 5], translation [10,
11] and rewriting (in order to benefit from inference) [6] of a SPARQL query, have

been published.

The rest of the paper is structured as follows: In section 2, we present a motivating

example. Then, the patterns of the proposed correspondences and the mapping types

are outlined in section 3, while the language that is used for mapping representation is

discussed in section 4. The SPARQL query reformulation process is described in

section 5 and the paper concludes in section 6.

2 Motivating Example

We present in this section a motivating example. In Fig. 1, we show the structure of

two different ontologies. The source ontology describes a store that sells various

products including books and cd’s and the target ontology describes a bookstore.

Fig. 1. Semantically Overlapping Ontologies. The notation is based on [24]. The rounded

corner boxes represent the classes followed by their properties, the parallelogram boxes at the
bottom express individuals, the rectangle boxes express the datatypes and finally, the arrows
express the relationships between those basic constructs of OWL.

In Fig. 1, we observe some correspondences between the two ontologies. For

example, the class “Book” in the source ontology seems to describe the same

individuals with the class “Textbook” in the target ontology (equivalence

relationship). In addition, correspondences like the one between the class “Collection”

and the class “Series”, or the one between the datatype property “name” and the

datatype property “title” can be thought as more general (subsumption relationships).

Apart from the obvious correspondences, we observe more complex ones such as

those between the class “Science” and the union of the classes “Physics” and
“Mathematics”, and the one between the class “Pocket” and the class “Textbook”

restricted in its “size” property values.

3 Mapping Types

In this section we define the set of mapping types between the Mediator and the target

ontologies. These mapping types are used for the SPARQL query reformulation
process.

The basic concepts of OWL, whose mappings are useful for the reformulation

process, are the classes (denoted as “c”), the object properties (denoted as “op”), the

datatype properties (denoted as “dp”) and the individuals (denoted as “i”). Since we

deal with SPARQL queries, some mapping types may not be useful for the query

reformulation process. For example, a mapping between an individual of the source

ontology and a concatenation of two different individuals of the target ontology

would be meaningless, since they cannot be represented in SPARQL. Such types of

mappings are described in [7] and many of them could be useful for processing the

query results but not during the query reformulation and query answering process.

In order to define the mapping types that can be useful for the reformulation
process, we use the set of symbols presented in Table 1.

Table 1. The notation used to define the different mapping types and concept/role expressions.

Symbol Notation

⊑, ⊒ inclusion operators

≡ equality operator

⊓ intersection operator

⊔ union operator

¬ negation operator

∅ empty set

| logical or

. used to specify a sequence of
binded concepts/roles

domain(c) property domain restriction to

the values of a class c

range(c) property range restriction to

the values of a class c

inverse(p) inverse of a property p

We consider that a class expression (denoted as “CE”) from the source ontology

can be mapped to a class expression from the target ontology.

Class Expression Mapping: CE rel CE, rel:= ≡ | ⊑ | ⊒ (1)

As a class expression, we denote any complex expression between two or more

classes, using disjunctions, conjunctions or both. Any class that participates in the

class expression can be restricted by the value of one or more properties, attached to it
directly or indirectly (directly in some of its own properties, or indirectly in some

property of an associated class) using a path (provided that a path connecting the class

and the desired property already exists).

CE::= c | c.R | CE ⊔ CE | CE ⊓ CE,

R::= R’ | ¬R’ | R ⊔ R | R ⊓ R,

R’::= P opr V, opr:= != | = | ≤ | ≥ | < | >

R denotes the restrictions applied in a class, while R’ stands for the restriction of a

property path P in a possible value V. V can be either a data value or an individual.

The operators that can be used in a property path restriction differ according to the

type of V. In order to define a restriction on a data value all the above operators can be
used (!=, =, ≤, ≥, <, >). But, in order to define a restriction on an individual only the

!=, = operators can be used.

A property path P is a sequence of object properties (possibly empty) ending with

a datatype/object property. It relates the class that we want to restrict with the

property (object or datatype) in which the restriction should be applied.

P::= P’ | dp | P’.dp

P’::= ∅ | op | P‟.op

Accordingly, an object property expression (denoted as “OPE”) from the source

ontology can be mapped to an object property expression from the target ontology.

Object Property Expression Mapping: OPE rel OPE (2)

As an object property expression, we denote any complex expression between two
or more object properties, using disjunctions, conjunctions or both. It is also possible

for the inverse of an object property to participate in the object property expression of

the target class. Any object property that participates in the object property expression

can be restricted on its domain or range values, using the same type of restrictions

with those described for the class expressions.

OPE::= op | OPE ⊔ OPE | OPE ⊓ OPE | OPE ⊓ domain(CE) | OPE ⊓

range(CE) | inverse(OPE)

Similarly, a datatype property expression (denoted as “DPE”) from the source

ontology can be mapped to a datatype property expression from the target ontology.

Datatype Property Expression Mapping: DPE rel DPE (3)

 As a datatype property expression, we denote any complex expression between

two or more datatype properties, using disjunctions, conjunctions or both. Any

datatype property that participates in the datatype property expression can be

restricted on its domain values.

DPE::= dp | DPE ⊔ DPE | DPE ⊓ DPE | DPE ⊓ domain(CE)

Finally, an individual from the source ontology (denoted as “is”) can be mapped

with an individual from the target ontology (denoted as “it”).

Individual Mapping: is ≡ it (4)

We mention here that the equivalence between two different properties or property

expressions denotes equivalence between the domains and ranges of those properties

or property expressions. Similarly, the subsumption relations between two different

properties or property expressions denote analogous relations between the domains

and ranges of those two properties or property expressions.

4 Mapping Representation

The language that we use in order to represent the mappings between two overlapping

ontologies has been defined in [20, 21]. It combines the alignment format [18], a

format used to represent the output of ontology matching algorithms, and the OMWG

mapping language [22] an expressive ontology alignment language. The

expressiveness, the simplicity, the Semantic Web compliance (given its RDF syntax)

and the capability of using any kind of ontology language are the key features of this

language.

Below, we list a possible set of correspondences, using first-order logic

expressions for the ontologies presented in Fig. 1 and afterwards we provide an

example showing the mapping representation of a specific correspondence using the
language that we mentioned above.

Type (1) mappings:

a. ∀x, [Book(x) ⇔Textbook(x)]

b. ∀x, [Publisher(x) ⇔Publisher(x)]

c. ∀x, [Expert(x) ⇔Expert(x)]

d. ∀x, [Product(x) ⇒Textbook(x)]

e. ∀x, [Collection(x) ⇐Series(x)]

f. ∀x, [Science(x) ⇔ (Physics(x) ⋁ Mathematics(x))]

g. ∀x, [Popular(x) ⇔ ((Physics(x) ⋁ Mathematics(x)) ⋀ BestSeller(x))]

h. ∀x, [Pocket(x) ⇔(Textbook(x) ⋀ ∃y; [size(x, y) ⋀ y≤14])]

i. ∀x, [(Novel(x) ⋁ Poetry(x) ⇔Literature(x))]

Type (2) mappings:

j. ∀x, ∀y [publisher(x, y) ⇔publishes(y, x)]

k. ∀x, ∀y [author(x, y) ⇔ (author(x, y) ⋀ creator(x, y))] 1

l. ∀x, ∀y [partOf(x, y) ⇔ (partOf(x, y) ⋀ ∃z; [size(x, z) ⋀ z≤14])]

Type (3) mappings:

m. ∀x, ∀y [name(x, y) ⇒title(x, y)]

n. ∀x, ∀y [id(x, y) ⇒isbn(x, y)]

Type (4) mappings:

o. AlanTuring = ATuring

The representation of mapping f (presented above) using the language that was
discussed in this section is shown in Fig. 2.

Fig. 2. The representation of mapping f.

1 The object property “author” in the target ontology consists of two different domains.

According to the semantics of OWL, this means that the domain of the object property

“author” is actually the union of the classes “Physics” and “Mathematics”.

5 SPARQL Query Reformulation

In this section we provide an overview of the SPARQL query reformulation process,

using a predefined set of mappings that follows the different mapping types described

in section 3.

The SPARQL query reformulation process is based on the query’s graph pattern

reformulation and is consequently independent of the query type (Ask, Select,

Construct, Describe). The SPARQL solution modifiers (Limit, Offset, Order By,

Distinct, Reduce) are not taken into consideration since they do not affect the

reformulation process.

In order to reformulate the graph pattern of a SPARQL query using 1:N mappings

(mappings between a basic OWL concept of the source ontology and a complex

expression, among basic OWL concepts, of the target ontology), the reformulation

algorithm traverses the execution tree in a bottom up approach, taking each triple
pattern of the graph pattern and checking for existing mappings of the subject,

predicate and object part in the predefined mappings set. Finally, it reformulates the

triple pattern according to those mappings.

In case of N:M mapping utilization (mappings between a complex expression of

the source ontology and a complex expression of the target ontology), the total graph

pattern must be parsed in order to discover the predefined complex mapping and then,

the algorithm must produce the required combination of triple patterns, based on this

mapping.

The SPARQL graph pattern operators (AND, UNION and OPTIONAL), do not

result in modifications during the reformulation process.

The reformulation of the FILTER expressions is performed by reformulating the
existing IRIs that refer to a class, property, or individual, according to the specified

mappings. The SPARQL variables, literal constants, operators (&&, ||, !, =, !=, >, <,

>=, <=, +, -, *, /) and built-in functions (e.g. bound, isIRI, isLiteral, datatype, lang,

str, regex) that may occur in a FILTER expression remain the same during the

reformulation process.

Finally, in case that more than one mappings are specified for a given class or

property expression of the source ontology, the reformulation algorithm chooses the

one that produces the most efficient reformulated query. Moreover, for efficiency

reasons, a graph pattern normalization step is applied in parallel to the reformulation

process, similarly with the one that is described in our SPARQL2XQuery [11]

framework.

5.1 Reformulation Examples 2 3

We briefly present in this section the SPARQL reformulation process, using a set of

examples due to the space limitation. We assume that an initial SPARQL query is

posed over the source ontology presented in Fig. 1 and is reformulated to a
semantically equivalent query in order to be posed over the target ontology of Fig. 1,

using the mappings specified in section 4.

Example 1 : Consider the query posed over the source ontology: “Return the

titles of the pocket-sized scientific books”. The SPARQL syntax of the source

query and the reformulated query is shown in Fig.3. During the reformulation

process the mappings f), h) and m) from section 4 are used.

Fig. 3. The source and reformulated queries of Example 1.

Example 2 : Consider the query posed over the source ontology: “Return the

titles of books that belong to the poetry or novel category”. The SPARQL syntax

of the source query and the reformulated query is shown in Fig.4. During the
reformulation process the mappings i) and m) from section 4 are used.

2 The graph pattern normalization step is not included in the examples presented here, in order

to make the reformulation process more easily understandable.
3 For the SPARQL query examples presented in this subsection we use the following prefixes:

 PREFIX s: <http://example.com/Source.owl#>

 PREFIX t: <http://example.com/Target.owl#>

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Fig. 4. The source and reformulated queries of Example 2.

6 Conclusions

In this paper we presented the formal definition and the encoding of the mappings of a

semantic based mediation framework (based on OWL/RDF knowledge

representations and SPARQL queries) that we are currently developing. The

framework is based on a set of mapping types that can be useful in the context of

SPARQL query reformulation. Thus, a SPARQL query that can be posed over a
source ontology, is reformulated, according to the mappings, in order to be capable of

being posed over a target ontology. We have also outlined the SPARQL query

reformulation process and presented examples of query reformulation in a motivating

example.

This work is part of a framework that we are pursuing, which aims to provide

algorithms, proofs and middleware for the support of transparent access to federated

heterogeneous databases across the web in the Semantic Web environment.

7 References

1. McGuinness D. L., van Harmelen F. (eds.): “OWL Web Ontology Language: Overview”.
W3C Recommendation, 10 Feb. 2004. (http://www.w3.org/TR/owl-features)

2. Manola F., Milles E. (eds.): “RDF Primer”. W3C Recommendation, 10 Feb. 2004.

(http://www.w3.org/TR/rdf-primer)
3. Prud'hommeaux E., Seaborne A. (eds.): “SPARQL Query Language for RDF”. W3C

Recommendation, 15 January 2008. (http://www.w3.org/TR/rdf-sparql-query/)
4. S.M. Benslimane, A. Merazi, M Malki, D. Amar Bensaber: “Ontology mapping for

querying heterogeneous information sources”. INFOCOMP (Journal of Computer
Science) 7(2):44-51, ISSN 1807-4545. 2008

5. Bastian Quilitz, Ulf Leser: “Querying Distributed RDF Data Sources with SPARQL”. In
Proceedings of ESWC 2008

6. Yixin Jing, Dongwon Jeong, Doo-Kwon Baik: “SPARQL Graph Pattern Rewriting for
OWL-DL Inference Query” Proceedings of the 2008 Fourth International Conference on
Networked Computing and Advanced Information Management

7. Jérôme Euzenat, Axel Polleres, François Scharffe: “Processing ontology alignments with
SPARQL” (Position paper). International Workshop on Ontology Alignment and
Visualization, CISIS 2008, Barcelona, Spain, March 2008

8. Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, Dave Reynolds:
“SPARQL basic graph pattern optimization using selectivity estimation” In Proceedings of
WWW 2008

9. Olaf Hartig, Ralf Heese: “The SPARQL Query Graph Model for Query Optimization”. In
Proceedings of ESWC 2007

10. Christian Bizer, Richard Cyganiak: D2R Server. http://www4.wiwiss.fu-
berlin.de/bizer/d2r-server/index.html

11. Nikos Bikakis, Nektarios Gioldasis, Chrisa Tsinaraki, Stavros Christodoulakis: “Querying
XML Data with SPARQL”. In Proceedings of the 20th International Conference on
Database and Expert Systems Applications (DEXA „09)

12. J. Akahani, K. Hiramatsu, T. Satoh: “Approximate Query Reformulation for Ontology

Integration”. In Proc of the Semantic Integration Workshop Collocated with the Second
International Semantic Web Conference (ISWC-03)

13. Namyoun Choi, Il-Yeol Song, Hyoil Han: A survey on ontology mapping. SIGMOD
Record 35(3): 34-41 (2006)

14. Yannis Kalfoglou, W. Marco Schorlemmer: Ontology Mapping: The State of the Art.
Semantic Interoperability and Integration 2005

15. Chiara Ghidini, Luciano Serafini: Mapping Properties of Heterogeneous Ontologies.
AIMSA 2008: 181-193

16. Chiara Ghidini, Luciano Serafini: Reconciling Concepts and Relations in Heterogeneous

Ontologies. ESWC 2006: 50-64
17. Chiara Ghidini, Luciano Serafini, Sergio Tessaris: On Relating Heterogeneous Elements

from Different Ontologies. CONTEXT 2007: 234-247
18. Euzenat, J.: An API for ontology alignment. In Proc. 3rd International Semantic Web

Conference, 2004: 678-712
19. François Scharffe, Jos de Bruijn: A language to specify mappings between ontologies.

SITIS 2005: 267-271
20. Jérôme Euzenat, François Scharffe, Antoine Zimmermann: D2.2.10: Expressive alignment

language and implementation. Knowledge Web EU-IST Project deliverable 2.2.10, 2007
21. Scharffe, F.: PhD thesis: “Correspondence Patterns Representation”. Available at:

http://www.scharffe.fr/pub/phd-thesis/manuscript.pdf
22. Scharffe, F., de Bruijn, J.: A language to specify mappings between ontologies. In: Proc.

of the Internet Based Systems IEEE Conference (SITIS05). (2005)
23. François Scharffe. Omwg d7: Ontology mapping language. http://www.omwg.org/TR/d7/,

2007
24. J. Euzenat, P. Shvaiko: Ontology matching. Springer-Verlag, Heidelberg, 2007

