
Nektarios Gioldasis
Technical University of Crete

nektarios@ced.tuc.gr

Supervisor:
Prof. Stavros Christodoulakis

stavros@ced.tuc.gr

VLDB 2002
Hong Kong, China

UTML
Unified Transaction Modeling Language

ØUbiquity introduces new issues:

Ø Implementers “would like” application to be written once independently of delivery
channel, device, etc.

ØAsynchronous transaction execution is needed; how is it supported? What’s now the
application’s behavior?

ØDesign and documentation for such applications is important. No such mechanisms exist.

ØA modeling language for analyzing, designing and documenting their transactional
behavior would be valuable

The Problem

Ubiquity Issues

ØWeb applications exhibit complex transactional behavior:

ØHierarchical structure of transactions satisfying user (sub) goals

ØMultiple resource managers, with diverse semantics and characteristics, are
accessed in the scope of the same transaction

Ø Pre-existing logic is utilized (e.g. Legacy Systems, Web Services)

ØNot all user activities are strict ACID transactions

ØNavigation actions may mislead user regarding transaction status

Web Applications’ Complexity

An Execution Environment

ØA single access point of the application
ØMultiple Resources with diverse semantics

and interfaces
ØUse of pre-existing logic

(legacy systems, web services, etc.)
ØUbiquity

The same application logic is delivered
Ø through different channels
Ø at different devices
Ø in different user profiles

ØDesign the transactional properties
of the application logic in advance
ØEnable the design of web applications in

both top-down and bottom-up fashion
ØDocument the application behavior

enabling easy derivations of new
implementations (or transformations) for
new devices, user profiles, etc.

Characteristics

Our Goal

Objectives For UTML And Methodology

ØDescription of both static structure
and execution flow of transactions
ØModeling of transactions including most

of known transaction models
ØExtensibility for designing new

transaction models according to
the application’s requirements
ØDescription of diverse decomposition
semantics and behavior into the same
structured transaction
ØSupport for weak transactions

(weaker than ACID)
ØDescription of long-lived transactions
ØProvision for modeling asynchronous

execution of transactions

Objectives Set For UTML Followed Methodology

ØBuilt on top of UML
ØUse of UML class diagrams for modeling

the static structure of transactions and
UML state charts for modeling their
dynamic behavior
ØProvide a flexible and extensible meta-
model capable to describe transactions
following most known transaction models
ØGive appropriate well-formedness rules

to formalize and automate the transaction
modeling process
ØProvide a complete notation system to

visualize the transaction modeling process
ØProvide Documentation for the designed

applications in appropriate format;
Important for different implementations
of the same applications

The UTML Transaction Meta-Model

Operation

Termination Operation

Initialization Operation

Functional Operation

Managment Operation

TerminationSet
11..* 11..*

InitializationSet

1
1..*

1
1..*

FunctionalSet
1..* 11..* 1

ManagmentSet
2..* 12..* 1

1

1

1

1
1

1

1

1

OperationInstance

ActivityHistory

OperationHistory

1..*

1

1..*

1

ActivityInstance
1..*1 1..*1

0..1 10..1 1

1

1

1

1

PropertySet

OperationSet

1 11 1

1

1

1

1

ActivitySet

ExecutionContract

Activity1 11 1
0..*1 0..*1

1

1

1

1 1..* 1..*1..* 1..*

1

1

1

1

Compensation

1

0..1

1

0..1

Characteristics
ØActivities and Operations

as main modeling concepts
ØDistinction between
management and logic of
activities

ØDefinition of execution
contracts (subsets of
ACID) for activities
ØSeparate modeling of

activity decomposition
semantics
ØModeling of Compensations
ØWell-Formedness rules are

used to formalize the user-
defined models

Extensibility Mechanism
Ø1st Part: Definition of new management operations for the custom model
Ø2nd Part: Definition of appropriate well-formedness rules formalizing model’s behavior

The UTML Notation System

Formalization
ØAlso, Well-Formedness Rules may be attached on activities formalizing their behavior

and co-ordination with parent/sub activities
(2nd part of meta-model’s extensibility mechanism)

UTML Profile

Organization Model Execution Model

Stereotyped
Classes

Class
Diagrams

Stereotyped
Associations

Simple
States

Composite
States

Stereotyped
PseudoStates

State
Machines

State Charts

Conclusions And Future Work

Conclusions
ØIt has the ability to:
Ø Describe transactions in a high level and declarative way
Ø Support design in both top-down and bottom-up approach
Ø Model weak transactions – weaker than ACID
Ø Describe transactions conforming to the most of known transaction models
Ø Incorporate different semantics and behaviors into the same structured transaction
Ø Describe transaction models from scratch by using its extensibility mechanism

(management operations & well-formedness rules)
Ø Model the execution flow of transactions, defining a primitive user navigation model

Future Work
ØBetter formalization of UTML
ØExtension to directions of:
Ø Describing asynchronous execution of transactions (replication, allotment, virtual

executions, synchronization), enabling the design of mobile applications
Ø Modeling data flow dependencies between transaction and compensation strategies
Ø Modeling persistent activities (recoverability of activities; not only databases)

A work financed by the EU Project Ubiquitous Web Applications (IST-2000-25131) www.uwaproject.org

