

Ubiquitous Web Applications

UWA Consortium1
Piazza del Carmine 22, 09100 Cagliari, Italy

Tel: +39 0574 27256; Fax: +39 0574 401443; Email: gab@acm.org

Abstract. Web applications have already evolved from static sites to completely
distributed applications; nowadays they are facing a new transformation and are
becoming ubiquitous systems that are available anytime, anywhere, and with any
media.
This new requirement led the Ubiquitous Web Applications (UWA) project (IST-
2000-25131) to propose a special purpose design approach to modelling Web
applications.
The UWA Consortium aims at producing a design environment with a number of
innovative features: explicit requirements elicitation, flexible and powerful
customisation design, integrated notations based on UML, orientation towards
application frameworks to maximise design reuse, and use of XML to support
portable design documentation. This paper introduces the approach and sketches the
main design steps

1. Introduction

We are facing the need for new web applications enabling ubiquitous access to e-
commence and m-commerce services [1]. Ubiquitous computing was first stressed by Marc
Weiser [2], envisioning a scenario where computational power would be available
everywhere embedded in walls, chairs, clothing etc. Weiser's goal is to achieve the most
effective kind of technology, which is available throughout the physical environment, while
making them effectively invisible to the user. In the area of web applications, ubiquity is
not seen as visionary in this highly pervasive sense, meaning that computing power is
embedded everywhere. Rather, ubiquitous web applications build more on existing
technology, in that web access is no longer primarily a domain of browsers based on
desktop PCs but more and more done by various commercially available mobile devices. In
general, ubiquity offers new opportunities and challenges for web applications in terms of
time-aware [3], location-aware [4], device-aware [5] and personalised services [6]. This
implies that ubiquitous web applications have to take into account, individually for each
user, time and location of access, together with the different capabilities of devices
comprising display resolution, local storage size, method of input and computing speed as
well as network capacity. Consequently, the fundamental objective of ubiquitous web
applications is to provide services not only to people at any time, anywhere, with any media
but specifically to communicate the right thing at the right time in the right way.

Given this belief, the UWA consortium started working on the special-purpose
modelling methodology that is presented in this paper.

The overall modelling problem is partitioned into the following design aspects:
• Requirements elicitation to define what the application should do;

1 The UWA consortium (www.uwaproject.org) comprises: Atlantis SpA (Italy), Banca 121 (Italy), Fundacion
Robotiker (Spain), Politecnico di Milano (Italy), Punto Comercial (Spain), University of Linz (Austria),
Technical University of Crete (Greece), Siemens AG (Austria), Università della Svizzera Italiana
(Switzerland), and University College London (United Kingodm).

• Hypermedia Design to model data, and how they can be navigated and presented, and
operations (services) as available to the user;

• Transaction Design to model the transactions made available by the application;
• Customisation Design to specify how the application should adapt itself to the context,

and, in particular to the user, device, communication channels, time and location.
Each modelling activity is defined in terms of a metamodel, which captures the set of

relevant concepts and the primitives; a notation, based on UML [7] to represent the
concepts; a set of guidelines and heuristics, to help the designer exploit the concepts and
understand the trade-off among the different design solutions; and a set of tools, to enact the
design process and enforce coherence and consistency of design.

The UWA project provides a unified framework, which integrates the various
metamodels and notations and highlights their mutual interdependence, and a unified
software environment, based on Rational Rose, that integrates the tools specific to each
modelling activity.

2. Requirements Elicitation

The major influence on our approach to requirements engineering is Axel van
Lamsweerde’s KAOS work [8]. Work by Lamsweerde (and Yue [9]) introduced a new
approach to requirements engineering. Their goal-oriented approach makes the why of
requirements explicit by tying requirements to goals. A goal is a somewhat abstract and
long-term objective the system should achieve through cooperation of agents (user and
software) in the software-to-be and in the environment, while requirements are shorter-
term and more concrete objectives. Requirements operationalise goals.

Goals and requirements are to be placed within a framework which conceptually
supports the elicitation of goals and the refinement of goals into requirements. Key aspects
of this framework are introduced in the following.

A stakeholder is someone or something that has an interest in the system. This
definition is purposely very vague because a stakeholder is an extremely general concept.
Almost anyone can be a stakeholder. Examples include end users, developers, buyers,
managers (i.e., people who will not use the system but will manage people who do). These
stakeholders are very important but too often neglected in the requirements engineering
process. A stakeholder owns one or more goals, and a goal may be owned by one or more
stakeholder. A goal that interests no one is a non-goal, and should therefore be removed.
Given the nature of the applications involved, a user-centred approach is employed. It
means that the centre of our world is no longer the system, but rather the stakeholders of the
system.

Next, a goal delivers a certain value to its stakeholders. The actual value delivered
represents the why of the ownership, and is strictly dependent on both the goal and the
stakeholder. The value is extremely hard (and probably impossible in the general case) to
formalise. Therefore, it is usually expressed in prose as a comment. It is an arbitrary
quantity that cannot be taken as an absolute measure. It is nonetheless very useful for
establishing importance and priority of goals.

High-level goals represent the ultimate desires of stakeholders. However, for them to be
of use, they have to be refined into lower-level goals. This refinement process is extremely
useful because a high-level goal per se does not say much to the designer. It is too abstract,
too high-level and too long-term to be fed directly to Web designers. In addition, refining
the goals into subgoals is invaluable for eliciting new requirements, and assessing existing
ones. In our experience, it is often very hard to understand what the real goal of the
customer is. Therefore, quite often during the refinement process one realises that a goal

previously expressed by a stakeholder is not actually a goal of theirs, but rather of some
other stakeholder, or sometimes that it is in fact not a goal at all, and no one is actually
interested in it.

Refining a goal into subgoals helps identify conflicts. A conflict is a relationship
between two goals or requirements that means the two cannot be fulfilled together. A
conflict must therefore be solved or the designers will not know what to do. A conflict must
be solved as soon as possible, and in any case before the operationalisation step, that is,
before any of the goals involved in the conflict are turned into actual requirements.

Requirements – the leaves of the derivation graph – are categorised into dimensions. As
already stated above, this is the first case in the literature in which the goal-oriented
approach has been applied to interactive systems and Web-based applications, and thus a
novel requirement categorisation scheme had to be invented.

Each requirement belongs to exactly one dimension. This restriction can also be seen as
a necessary (although certainly not sufficient) condition for a requirement to be considered
as such: if a requirement cannot be easily and clearly assigned to exactly one dimension,
then it is too general to be called a requirement (and is therefore still a goal). The number
and nature of dimensions is not fixed, and new ones can be added at will and at any time.
 Requirements also have an associated priority. Prioritising requirements becomes very
desirable in any realistic software engineering methodology. There comes a time when a
designer realises he simply cannot implement all of the requirements at the same time or in
the same version. Indeed, constraints on time, budget, or other resources can severely limit
the number of requirements that can actually be realised.

Finally, an assumption represents some entity, event, or other piece of information that
belongs to the world and that we have to come to terms with when refining goals into
subgoals and eventually into requirements.

3. Hypermedia Design

Hypermedia aspects in UWA are dealt with by suitably tailoring W2000 [10], whose main
concepts are organised in three main models.

The Information model specifies the concepts for specifying the content available to
the user (Hyperbase) and how it can be accessed (Access structures). The key element is the
Entity. It renders data of interest to the user as if they were conceptual objects. An entity
resembles the concept of a class and, as classes, it can be the root of a generalisation
hierarchy. An entity is organised in semantic sub-units, called Components, which are pure
organisational devices for grouping the contents of an entity into meaningful chunks. The
result of this definition is a tree of components, based on the part-of relationship.
Components can further be decomposed in sub-components, but the actual contents can be
associated with leaf components only. The contents of leaf components is defined in terms
of Slots, i.e., the attributes that define the primitive information elements. A Segment
groups slots to supply information chunks as consumed by the user.

A Semantic Association connects two entities with a double meaning: it both creates
the infrastructure for a possible navigation path (by connecting a source to a target) and has
proper, local, information, called Association Center, which contains data that define and
specify the association itself and provides additional information on how to represent both
the single target elements, in a concise way, and the whole group of target elements that
relate to the same source. Entities can also be grouped in Collections that are organised sets
of information objects. A collection provides the user with a way to explore the information
contents of the application and, thus, is the key concept as to access structures.

The Navigation model specifies the concepts that allow the designer to reorganise the
information for navigational purposes. He should reuse the elements in the previous model
to specify the actual information chunks together with the relationships among them. The
information content is organised in atomic units, called Nodes. They do not define new
contents, but either come from entity components, semantic association, and collection
centers, or are added only for navigation purposes (e.g., to introduce fine-grained
navigation steps). In the former case, they contain the slots associated with the information
element they render. In the latter case, they are simple empty nodes. Two nodes are linked
through a directed Accessibility Relationship to specify that the user can navigate from the
source to the target node.

Nodes exist in the context of a Navigation Cluster that groups nodes and accessibility
relationships to foster and facilitate the navigation among data (nodes). Clusters can be
nested and can further be characterised according to the kind of information they render.
Structural Clusters consist of all the nodes derived from the components of entities,
Semantic Clusters comprise all the nodes that come from source, target and centers of
semantic associations, and Collection Clusters comprise all the nodes that come from the
members and centers of collections.

The Presentation Model defines the concepts needed for the designer to specify how
the content is published in pages and how users are supposed to reach data within the same
page or across different pages. Presentation Units are the smallest units at presentation
level. They can either come from nodes or add new content that is defined only at
presentation level for aesthetic/communication purposes. A Section is a set of presentation
units derived from nodes that belong to the same navigation cluster. A Page is a grouping
of sections, which could also be non-semantically related, from which it inherits links and
navigation features. Presentation units, sections, and pages can all be sources or targets of
Presentation Links, that is, a connection between two presentation elements to enable the
navigation between them. According to the aforementioned concepts, we can further
classify the links in a page as Focus Links to remain in the same page, but moving the page
focus from one unit to another, Intra-page Links to navigate between instances of the
same page type, and Page Links to navigate between instances of different page types.

One of the main differences of Web applications, with respect to more traditional Web
sites, is the possibility of invoking special-purpose operations (services) while browsing the
site. Operations can change the hypermedia and business states of the application, but they
can also affect the underlying system, control or be controlled by external elements (e.g., an
S.M.S. server), and be either explicitly triggered by users or implicitly invoked in particular
situations. In UWA, designers can add:
• Simple Operations, which are atomic (with respect to their execution) computational

steps that can be invoked by the user, or could be part of activities. A simple operation
must be considered a black-box component with respect to the user's point of view.

• Multi-step Operations, which preserve their essence of being atomic, but are not black-
box anymore. A multi-step operation is constrained on its borders only, but suitable
scenarios can be defined to explain the different steps through which the execution
evolves.

• Activities, which are not atomic anymore. They can be seen as business transactions
and/or containers for operations (both simple and multi-step ones). Activities identify
sets of operations to which different behavioural semantics can be associated. For
example, either the whole activity is seen as an atomic transaction, or other more
sophisticated transactional properties could be associated with the activity to better
control the effects of its execution.

4. Transaction Design

One of the most important success factors for e-business is the transactional behaviour that
each Web application offers. Frequently such behaviour is complex, composed of several
sub-transactions and accesses many different and distributed resources including existing
legacy systems. Transaction design for such applications needs to be very flexible allowing
both the development of Web applications from scratch, by decomposing user goals into
sub-goals that exhibit transactional behaviour (top-down design), and using already existing
systems or services to compose new applications offering added value services (bottom-up
design).

Extended Transaction Models (ETMs) provide for transactions with complex internal
structures and up to now several different such models have been proposed (sagas, nested,
open nested, etc). Also, some recent web standards have been adopted and new proposals
are continuously appearing. However, they have limitations that make their use for
advanced Web applications difficult. Limitations come mainly from their inflexibility to
incorporate different transactional semantics in one (structured) transaction or to describe
different behavioural patterns for different parts of the same transaction. On the other hand,
there is no high-level design mechanism to facilitate the transaction design process at an
application design level.

Our objective is to facilitate the complex design process for web transactions by
providing a high level transaction modelling language based on UML extensions for
designing complex web transactions. To achieve this we propose UTML (Unified
Transaction Modelling Language) as a high level transaction modelling language that can
be used by an application designer to describe transactional behaviour according to the
application’s requirements and complexity. UTML is based on a transaction metamodel,
which is flexible enough to describe transactions conforming to most of the known
transaction models. This metamodel provides the appropriate mechanisms and primitives
that are needed for describing complex transactional behaviour and is provided to the
designer through a rich UTML notation (a set of UML extensions for the purpose of
transaction modelling). UTML describes transactions from an application point of view and
this has many advantages since the transaction itself is considered to be involved in the
whole application and designed in this way (when a transaction is able to be executed, what
activities it includes, who is initiating it, etc.). In particular UTML:
• Provides description for both structural and execution dependencies of transactions.

That is, it can model what activities a transaction includes and with what semantics,
when it can be invoked, who can invoke it, etc.

• Provides detailed specification of transaction decomposition semantics not for the
whole model necessarily, but for each transaction node independently. This is
important since it allows for incorporating behaviour of different transaction models
into the same structured transaction.

• Distinguishes between management operations and functional operations that a
transaction has, giving the ability to specify its behaviour.

• Provides for designing transactions with execution contracts weaker than ACID,
integrating diverse resources like legacy systems. Moreover, it formalises the
decomposition of such transactions and the propagation of ACID properties in sub-
transactions.

• Introduces the concept of well-formedness rules that are applied on well-described
concepts and are used to describe intra- and inter-transaction dependencies.

• Is an extensible modelling language for describing application-specific transactional
behaviours. Well-formedness rules and management operations compose the
extensibility mechanism of UTML.

• Describes transaction execution flows and run time execution dependencies between
transactions using finite state machines.

• Provides a rich UML based notation, with appropriate stereotypes, that is used to
visualise and document the transaction design.

5. Customisation Design

Our approach to customisation design is based on a broad view on customisation [11].
Although most often separated in existing approaches [12], we think that customisation for
ubiquitous web applications should uniformly consider personalisation aspects, together
with issues resulting from being ubiquitous, thus supporting the
anytime/anywhere/anymedia paradigm. In our opinion, the design space of customisation
comprises the two orthogonal dimensions context and adaptation. The context dimension
comprises the circumstances of consumption of a ubiquitous web application mainly
dealing with the question “why to customise and when”. In this respect, we define context
as the reification of certain properties, describing the environment of the application and
some aspects of the application itself, which are necessary to determine the need for
customisation. The adaptation dimension mainly refers to questions concerning which
changes to make as well as what to change. Customisation is seen, in turn, as a combination
of a certain context and certain adaptation, thus adapting the ubiquitous web application
towards a certain context. To accomplish this we base our approach on a reflective
architecture as depicted in 0. The context provides detailed information about the
environment of a web application and the web application itself. Thereby the context
influences not only the requirements as gathered by requirements elicitation but also
triggers the actual customisation as soon as the context changes. The context is divided into
a physical context representing the level of environment sensors and the logical context
representing abstracted information. A rule-based mechanism in terms of customisation
rules is employed in order to specify the actual customisations. Customisation rules are, in
turn, determined by requirements. For providing a separation of concerns between the
primary service requirements and the requirements of ubiquity, the application is divided
into a stable part, comprising the default, i.e., context-independent structure and behaviour
of the application and a variable, context-dependent part, thus being subject to most of the
adaptations.

Customisation
rules perform

adaptations

trigger

Ap
pl

ic
at

io
n

Customisation Design

Variable part

Stable part

reify

influence

determine

Requirements

PhysicalContext

Environment

reify

LogicalContext

Customisation
rules perform

adaptations

trigger

Ap
pl

ic
at

io
n

Customisation Design

Variable partVariable part

Stable partStable part

reify

influence

determine

Requirements

PhysicalContext

Environment

reify

LogicalContext

 Figure 1: Overall Architecture of Customisation Design

To support the architecture introduced in Figure 1, we propose a generic customisation
model in the sense of an object-oriented framework, which provides some pre-defined
classes and language constructs in order to model application dependent customisation. For

example, the customisation rule model allows specifying certain customisations. The
adaptation desired towards a certain context is specified in terms of customisation rules
which are specified within UML annotations attached to those model elements being
subject to customisation. The customisation rule model again provides a set of sub models
in terms of an event model, a condition model and an action model. The event model
specifies a set of pre-defined events, responsible for determining potential violations of
certain requirements due to changes in context. The condition model provides logical
expressions using OCL syntax and allows specifying predicates on the context model. The
action model, finally, defines the syntax for certain adaptations and provides a set of
adaptation operations. These adaptation operations are generic and pre-defined for each
model element being part of information design, navigation design, presentation design,
and operations design. In addition to these generic adaptation operations, additional
application-specific adaptation operations can be defined by the customisation designer.
For a detailed description of the generic customisation model, the reader is referred to [11]
and [13].

6. Tool Architecture

The UWA project provides a set of software tools making up a design-supporting
environment, that helps the designer in all the relevant activities and automatically produces
design documentation. These tools have been developed by extending the Rational Rose
CASE tool through its REI mechanism (Rose Extensibility Interface).

Four different Rose add-ins have been developed within the UWA project: one for
requirements elicitation, one for hypermedia design, one for transaction design and one for
customisation design. The customisation design is tightly coupled with the other three add-
ins, as customisation refers to the modelling elements of each of the other add-ins.
The add-ins provide the following components:
• Customised menus that invoke methods on UWA COM objects.
• Extensible properties. UWA model elements are extended through additional

properties and their values. This is the implementation of the UML extensibility
mechanism called UML tagged-values.

• Stereotypes (icons). The look of UWA model elements are customised as makes sense
to each add-in. This custom look is a new icon for the diagram editor, toolbar buttons,
and browser icons.

• Events (COM Server). Each add-in registers for a select number of events where a
method on a UWA COM object is called.

• Online help. Each add-in introduces additions to the Rose online help.
• Documentation report generation.
UWA also provides a Rose framework to facilitate the design. When creating a new

UWA model using this framework, the new model is initialised with a set of specific model
elements.

7. Conclusions

The paper presents the overall UWA methodology and identifies four main aspects that
belong to the model of a modern Web application: Requirements, Hypermedia elements,
Customisation aspects, and Transactions.

Besides refining the methodology, our future work will be devoted to the
implementation of a prototype environment, based on Rational Rose, and to the

dissemination of the modelling approach by applying it to the specification of new
challenging applications and by convincing new customers to adopt UWA for modelling
their Web applications.

Several issues remain to be resolved. First, from a customisation point of view, what is
the "right" conceptual model of complex context and profile information? There are several
standardisation efforts under way, such as CC/PP [14] and P3P [15], but to the best of our
knowledge, there exists no comprehensive but open framework for context and profile
modelling. In particular, we regard openness as a crucial issue, since the kinds of relevant
context and profile information will grow in the near future (think of temperature in
household systems, blood pressure in health systems, etc).

Second, we are currently working to extend the core UTML metamodel in order to
provide modelling of transaction aspects such as persistent activities, synchronisation,
escrow-like resource allocation, and compensation strategies according to dataflow
dependencies between activities.

Interested readers can refer to [16] for all details about the project.

References

[1] S. Ceri, P. Fraternali, and A. Bongio, Web Modeling Language (WebML): a modeling language for

designing Web sites, Proc. of the 9th World Wide Web Conference (WWW9), Amsterdam, May 2000
[2] M. Weiser, Some computer science issues in ubiquitous computing, CACM, 36 (7), 1993
[3] A. C.W. Finkelstein, A. Savigni, G. Kappel, W. Retschitzegger, E. Kimmerstorfer, W. Schwinger, Th.

Hofer, B. Pröll, Ch. Feichtner, Ubiquitous Web Application Development - A Framework for
Understanding, The 6th World Multiconference on Systemics, Cybernetics and Informatics, Orlando,
Florida, US, July 2002

[4] M. D. Good, J. A. Whiteside, D. R. Wixon, S. J. Jones, Building a User-Derived Interface,
Communications of the ACM (CACM), Vol. 27, No. 10, October 1984

[5] W. Retschitzegger, W. Schwinger, Towards Modelling of DataWeb Applications - A Requirements'
Perspective, Proc. of the Americas Conference on Information Systems (AMCIS) Long Beach California,
Vol. I, August 2000

[6] L. Kleinrock, Nomadicity: Anytime, Anywhere In A Disconnected World. Mobile Networks and
Applications, 1(4), Jan. 1996

[7] Object Management Group. Unified Modeling Language (UML) Specification. Version 1.4, Technical
report, OMG, September 2001

[8] A. Dardenne, A. van Lamsweerde, and S. Fickas, Goal-directed Requirements Acquisition. Science of
Computer Programming, Vol. 20, 1993

[9] K.Yue, What Does It Mean to Say that a Specification is Complete. Proceedings of the Fourth
International Workshop on Software Specification and Design (IWSSD-4), Monterey, CA, USA, 1987

[10] L. Baresi, F. Garzotto, and P. Paolini, Extending UML for Modeling Web Applications. In Proceedings of
34th Annual Hawaii International Conference on System Sci-ences (HICSS-34). IEEE Computer Society,
2001

[11] G. Kappel, W. Retschitzegger, W. Schwinger, Modeling Ubiquitous Web-Applications - The WUML
Approach, Proceedings of the International Workshop on Data Semantics in Web Information Systems,
Kyoto, Japan, 2001

[12] G. Kappel, W. Retschitzegger, W. Schwinger, Modeling Customizable Web Applications - A
Requirement's Perspective, Proceedings of the International Conference on Digital Libraries, Kyoto,
Japan, 2000

[13] G. Kappel, W. Retschitzegger, E. Kimmerstorfer, B. Pröll, W. Schwinger, Th. Hofer; Enabling Ubiquity
for Web Applications - Customisation Modelling for Web Applications; submitted for publication

[14] World Wide Web Consortium (W3C), Composite Capabilities/Preference Profiles,
http://www.w3.org/Mobile, 2001

[15] World Wide Web Consotrium (W3C), Platform for Privacy Preferences (P3P) Project,
http://www.w3.org/P3P, 2001

[16] UWA consortium. www.uwaproject.org
[17] A. Biliris, S. Dar, N. Gehani, H. V. Jagadish "ASSET A System for Supporting Extended Transactions"

Proc. of the ACM SIGMOD International Conference on Management of Data, 1994.

