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Abstract  

News programs are used for instant and comprehensive reporting of what is happening around the 
world. Automatic story segmentation and indexing techniques provide a convenient way to store, 
browse and retrieve news stories based on the user preferences. The objective of the work reported 
here is to provide an automatic, context-of-capture categorization, structure detection and 
segmentation of news broadcasts employing a multimodal semantic based approach. We assume 
that news broadcasts can be described with context-free grammars that specify their structural 
characteristics. For parsing of a news video following a corresponding grammar, we propose a 
system consisting of two main types of interoperating units: The recognizer unit consisting of 
several modules and a parser unit. The recognizer modules (audio, video and semantic recognizer) 
analyze the telecast and each one identifies hypothesized instances of features in the audiovisual 
input. Such features could range from upper-level concepts like a specific person appearing in a 
shot (e.g., the anchor), the appearance of a certain series of frames (e.g., the introduction sequence, 
which many news broadcasts have in their beginning), the possible topic in a news story, to low-
level, e.g., the similarity of two frames. A probabilistic parser using a probabilistic context-free 
grammar analyzes the identifications provided by the recognizers. In essence, the recognizers 
provide the parser with actual lexical tokens as a lexical analyzer would provide to a programming 
language parser. The grammar represents the possible structures the news telecast may have (the 
grammar is different for each type of news telecast), so the parser can identify the exact structure of 
this telecast. 

Categories and Subject Descriptors  
H.3.1 Content Analysis and Indexing; H.3.7 Digital Libraries; I.5.4 Pattern Recognition: 
Applications; F.4.2 Grammars and Other Rewriting Systems 

General Terms  
Algorithms, Design 

Keywords  
News, Segmentation, Classification, Audio Analysis, Video Analysis, Semantic Analysis, 
Probabilistic Grammars 

1 Introduction 

News programs are a valuable source of information regarding what is happening in the world. One of 
the definitions by the U.S. National Institute of Standards and Technologies (NIST) for the news 
stories is that a news story is a segment of a news broadcast with a coherent news focus, which may 
include political issues, finance reporting, weather forecast, sports reporting, etc. (http://www-
nlpir.nist.gov/projects/tv2004/tv2004.html#2.2). Other parts inside a news telecast cover commercials, 
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previews, introduction, outroduction etc. The coverage of a news program is very comprehensive, and 
it is likely that individual viewers are interested in only a few stories out of the complete news 
broadcast. Automatic story segmentation and indexing techniques provide a convenient way to store, 
browse and retrieve news stories based on the user preferences. 

News segmentation in broadcast videos is an emerging problem, and many researchers from 
various areas, such as multimedia, information retrieval and video processing, are interested in it. To 
address this problem, low-level features (referring to the audio and/or the visual signal of the video) 
could be extracted and then higher level features (such as the identification of news story boundaries 
and their classification) can be inferred. The problem of relating low-level features with higher-level 
ones that correspond to the human-like understanding of video content is the well-known problem of 
bridging the ‘semantic gap’ and a solution to it is necessary for effective retrieval performance. The 
problem is very difficult in general. In the Delos NoE, specifically in task 3.9, “Automatic, context-of-
capture based Categorization, Structure Detection, and Segmentation of News Telecasts”, our 
approach to bridge this semantic gap is twofold: Firstly by restricting the application domain to news 
videos, and secondly by exploiting the combination of multimodal analysis with semantic analysis. 

A first key observation to help bridge the semantic gap in the news video domain is that semantic 
concepts in news videos are conventionalized in many ways and this fact can be exploited. One 
convention is that segments in news telecasts do not appear in arbitrary order. Instead, most news 
telecasts follow a relatively strict scheme that determines the order of segments. E.g., different news 
stories are usually separated by anchor shots containing the presentation of the story that follows. This 
telecast structure allows the viewer to easily recognize different segments. Each news program has its 
own structural model. 

We assume that these news format models can be described with context-free grammars. Such a 
grammar can effectively support a multimodal segmentation process by removing ambiguities in 
classification, or by associating certain audiovisual cues with segment classes (e.g., news story, 
presentation). It models all interesting constraints in visual, audio and semantic features that are partly 
due to the way news programs are produced and partly to the habits and ways of work of the 
journalists and other agents related to the news production. Combining these features of different 
modalities through an appropriate grammar we achieve a multimodal analysis of the news telecasts. 

For parsing of a news video following a corresponding model, we propose a system consisting of 
two main types of interoperating units: The recognizer unit consisting of several modules and a parser 
unit. The recognizer modules analyze the telecast and each one identifies hypothesized instances of 
features in the audiovisual input. Such features could range from upper-level concepts like a specific 
person appearing in a shot (e.g., the anchor), the appearance of a certain series of frames (e.g., the 
introduction sequence, which many news broadcasts have in their beginning), to low-level, e.g., the 
similarity of two frames. A probabilistic parser using a probabilistic grammar analyzes the 
identifications provided by the recognizers. In essence, the recognizers provide the parser with actual 
lexical tokens such as a lexical analyzer would provide to a programming language parser. The 
grammar represents the possible structures the news telecast may have, so the parser can identify the 
exact structure of this telecast.  

In the rest of this paper we first present related work in the area of news segmentation and 
classification and we justify the suitability of our grammar-based approach (section 2). Section 3 
presents the overall design adopted. Section 4 presents the components of the architecture. Section 5 
discusses in more detail the parsing process and how the parser communicates with the recognizer 
modules. Section 5 concludes. 

 
2 Related work and suitability of our approach 

The typical way of integrating multimodal features in order to achieve News Segmentation and 
Classification (i.e. extracting and classifying news stories from news videos) is through statistical 
methods such as Hidden Markov Models (Dimitrova, Agnihotri and Wei 2000, Brand and Kettnaker 
2000, Boreczky and Wilcox 1998, Greiff et alii 2001, Eickeler and Muller 1999, Huang et alii 1999). 
In these approaches, the basic hypothesis is that the multimodal (low-level) features observed can be 
considered Markovian in some feature space and that efficient training data exists to automatically 
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learn a suitable model to characterize data. 
However, in other similar domains such as recognition of visual activities and interactions in 

videos (e.g. surveillance videos, gesture videos, etc.) another complementary approach based on 
various parsing strategies has been used (Ivanov and Bobick 2000, Moore and Essa 2001, Johnston 
2000). In these approaches the goal is to recognize structurally defined relationships of features where 
purely statistical approaches to recognition are less than ideal. These situations, can be characterized 
(following Ivanov and Bobick 2000) by one or more of the following conditions: 

- Insufficient data: Complete data sets are not always available, but component 
examples are easily found. 

- Semantic ambiguity: Semantically equivalent processes possess radically different 
statistical properties. 

- Temporal ambiguity: Competing hypotheses can absorb different lengths of the input 
stream, raising the need for naturally supported temporal segmentation. 

- Known structure: Structure of the process is difficult to learn but is explicit and a 
priori known. 

When these conditions arise, it seems natural to divide the problem in two: 
1. Recognition of low-level features (primitives) and 
2. Recognition of structure. 

The goal then becomes to combine statistical detection of primitives with a structural interpretation 
method that organizes the data. 

In this work we adopt the method of (Ivanov and Bobick 2000) that combines mainly statistical 
techniques used to detect low-level features (primitives) of a more complex process structure. We 
combine results of the lower level feature recognizers into a consistent interpretation with the 
maximum likelihood using a Probabilistic Context-Free Grammar (PCFG) parser. The grammar 
provides a convenient means for encoding the external knowledge about the problem domain, 
expressing the expected structure of the high-level process. 

 
3 Overall architecture 

The architecture adopted is depicted in Figure 1. The central components of the architecture are the 
two main interoperating modules: the recognizers and the parser. 

The recognizers analyze the telecast and each one identifies hypothesized instances of features in 
the audiovisual input. Such features could range from upper-level concepts like a specific person 
appearing in a shot (e.g., the anchor), the appearance of a certain series of frames (e.g., the 
introduction sequence, which many news broadcasts have in their beginning), to low-level features, 
e.g., the similarity of two frames. 

The system includes three distinct recognizer modules. The audio recognizer, the visual recognizer 
and the semantic recognizer: 

- The visual recognizer identifies visual features on the news stream, such as a face 
appearing at an expected position in the video or the presence of a familiar frame 
according to the expected structure of the broadcast. 

- The audio recognizer, in turn, identifies audio features such as the presence of speech 
or music, e.g., a signature tune, and clustering of speakers. 

- Finally, the semantic recognizer identifies the semantics involved in the telecast. This 
includes topic detection, high-level event detection, discourse cues as well as possible 
story segmentation points. 

The PCFG (Probabilistic Context-Free Grammar) parser interoperates with the recognizers. The 
parser uses a probabilistic grammar in order to analyze the identifications provided by the recognizers. 
In essence, the recognizers provide the parser with actual lexical tokens such as a lexical analyzer 
would provide to a programming language parser. The grammar represents the possible structures the 
news telecast may have, so the parser can identify the exact structure of this telecast. The parser passes 
to the recognizer token probabilities (based on grammar rules probabilities and depending on the 
current status of the parsing procedure), which are used by the recognizer to aid in the recognition of 
lexical tokens, closing the feedback loop between the recognizer and the parser. When the parsing is 
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complete and all the structural elements of the input have been analyzed, the Segmentation 
Description Creator Module uses that information to provide an MPEG7 compliant XML document 
with the description of identified news story segments with semantic topics and semantic events. 

 

 
Figure 1: Overall architecture 

 
The grammar for each broadcast station, even for different news programs of the same station, is 

distinct. This is because the grammar captures the directing elements of the broadcast, and no two 
different programs have exactly the same directional structure. Therefore, an initial context-free 
grammar (without probabilities) has to be produced manually for each program of interest, a task on 
which the system relies heavily, if processing is to be robust.  

For the grammar to be probabilistic, it is necessary to complete a training process in order to assign 
probabilities to each production rule in the grammar. This training is carried out by the Probabilities 
Computation Module which uses a set of correctly labeled broadcast scenarios (in the form of a 
sequence of tokens). The examples can either be created manually, or through a semi-automatic 
annotation tool for ease of use.  

The semantic recognizer has access to the Upper Ontologies as well as domain specific ontologies 
created for news. The concepts acquired from these ontologies will define those detectable semantics 
that can be identified in the telecast. It should be noted here the semantic recognizer relies on the news 
telecast’s transcript to function. The current version of the audio recognizer does not provide the 
transcript. However, the test dataset used (TRECVID ’03 collection) does provide such transcripts and 
are used by the current version of the semantic recognizer. In future versions the audio recognizer will 
provide to the semantic recognizer the necessary transcripts. 

The Environment Initialization Module provides a basic system initialization, according to the 
“working environment”, a concept that encapsulates specific parameters of the system functionality, 
according to the input that will be analyzed.   

 
4 Main Components of the Architecture 

The visual recognizer, the audio recognizer and the semantic recognizer modules generate input for 
the probabilistic parser in the form of visual, audible and semantic tokens that are contained in news 
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video, making it possible to recognize the video’s inherent structure. The three recognizers are 
described in the following sections. This is followed by the descriptions of the modules related to the 
PCFG parsing and the generation of the final MPEG7 compliant segmentation and semantic 
description of the news videos. An additional application of the visual and audio recognizers has been 
done in TRECVID 2006, with focus on the detection of so-called high-level features instead of 
structural tokens (Bruckmann et alii 2006). 
 
4.1 Visual Recognizer 

The image feature classifier uses every 20th frame of an input video to do its calculations. Within 
these calculations filters are used to calculate a probability for every high level feature/ structural 
token. The following visual features are computed on every considered frame, followed by an SVM-
based classification to get a visual token. 

4.1.1 Color correlogram 
This filter is an implementation of a standard color correlogram filter (Huang et alii 1997). A color 
correlogram (henceforth correlogram) expresses how the spatial correlation of pairs of colors changes 
with distance. We used the correlogram for the high-level features Charts, Desert, Explosion/Fire, and 
Maps. 

4.1.2 Color histogram filter 
The color histogram filter reduces the amount of colors by removing a parameterizable number of bits 
inside every RGB color channel. We use color histograms with sizes of 4 or 8 bins per dimension (R, 
G, and B), for a total of 64 or 512 bins, respectively. These histograms are used either with or without 
the ROI filter (see above). 

4.1.3 Text detection filter 
The text detection filter is based on an algorithm developed in a Diploma thesis at the University of 
Bremen (Wilkens 2003). It uses an edge detection filter tailored for overlaid text to find single 
characters and searches for regions where many characters appear on a line. It tries to find words and 
sentences by their typical spatial distribution and returns the positions of these inside an image. We 
adapted the algorithm's parameters to values we found to work good on an internal test set. 

4.1.4 Edge direction histogram 
This filter is an implementation of a standard edge direction histogram by H. Tamura et alii 1978. We 
use it to analyze an image for directed textures. Tamura's directionality criterion is characterized by a 
histogram based on eight orientations. 

4.1.5 Image feature classification 
We created two different sets for every feature/token to find, an internal training set and an internal 
test set. The training set was used for building classification models, while the internal test set was 
used to validate these models. We use a support vector machine (SVM) in the form of the SVM-light 
software (Joachims 1999) to train one model for each high-level feature/structural token, based on our 
image filter results as described in the previous section. As a kernel we chose the radial basis function 
(RBF) kernel. We set the relative significance of positive vs. negative examples to their relative 
frequency. In our validation process, we vary the variance parameter, and the trade-off between 
training error and margin. We validate a model created with given parameters on our internal test set, 
using the F-measure. We retain the model with the highest F-measure.  
 
4.2 Audio Recognizer 

The audio classifier searches the audio tracks of the input videos for a number of previously learned 
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sounds. The classifier is built up of two stages. In the first stage we extract spectral features from the 
audio tracks. In the second step we use a supervised learning algorithm for training and prediction. 
Our approach is based on the algorithm proposed by Hoiem, Ke and Sukthankar 2005 but it differs in 
classifying. While Hoiem, Ke and Sukthankar 2005 suggest a decision tree classifier, we chose to use 
a support vector machine (SVM) in the classifier stage, in the form of the Libsvm library (Chang and 
Lin 2001). We will first describe the feature extraction step, followed by a description of our 
classification using a support vector machine. 

4.2.1 Audio feature extraction 
The first step of the sound feature extraction module is to create an abstract feature representation of 
the audio signal using an FFT on a temporally shifted window of the audio track. From the spectral 
representation, a set of 63 descriptive features is computed (Hoiem, Ke and Sukthankar 2005) to serve 
as input to the classifier. The size of the window is dependent of the type of sound that should be 
detected. The longer the sound, the bigger the window. We use windows ranging from 800 
milliseconds to 1200 milliseconds. When applying the final classifiers to the test set, the window is 
shifted in steps of 100 milliseconds. For training, we manually cut a set of training sounds for each 
type of sound to be detected. 

4.2.2 SVM classification 
We chose to manually create a training set for the sound we wanted to detect. We cut a small number 
of short example sounds between 0.5 and 2.5 seconds, including all the disturbing sounds that might 
be in the background. The manual searching and cutting of sample sounds takes a long time, but is in 
the end the only way to ensure that the system learns the right type of sounds. It turned out that the 
selection type and also the number of training sounds has a great effect on the prediction quality of the 
SVM. During the testing of the system for various videos, the prediction sometimes returned very few 
or no results, even if the news contained plenty of the regarded sound events. The reason for this was 
probably that the analyzed sounds were too different from the training examples. However, finding 
good training examples that cover the whole variance of sounds is hard to manage, and it is very hard 
to cut the sounds from the test material. Our solution to this problem was to lower the threshold on the 
prediction values yielded by the SVM classifier, such that not only positive predictions are counted, 
but also negative results down to -0.4 or lower. That way, we reached a much bigger number of 
positives.  
 
4.3 Semantic Recognizer 

The semantic recognizer component is responsible for all semantic-related recognition and 
classification involved in the system. In a first simplified approach, the semantic recognizer is based 
on the format of the TRECVID’03 collection transcripts, and encloses mechanisms for a three-staged 
transcript and words in transcript processing.  

At first stage the Semantic Recognizer briefly parses the transcript in order to extract and internally 
store the transcript words and other information. Except from the words spoken into the video, the 
transcript contains important information like the pauses that the speaker makes. Such information can 
be of significant importance when trying to define when a topic starts or ends. The pauses described in 
the transcript can even determine when the speaker emphasizes a word or phrase, giving valuable hints 
such as the significant keywords in a topic facilitating semantic event extraction. 

The second stage of transcript processing concerns the tagging of the words previously found into 
the transcript. For this task a part-of-speech (POS)-tagger is involved 
(http://nlp.stanford.edu/software/tagger.shtml). The POS-tagger is responsible for the tagging of the 
words given to it in sentences. An important issue at this point was how to bind together words in 
sentences for which no information about what their relation is. A proper sentence-grouping is very 
important in order to achieve the most accurate tagging. For this reason a pre-tagging is made in order 
to locate subjects, verbs and objects. In addition, with the aid of the pauses described above, an 
estimation of sentence-grouping is given to the POS-tagger. This way, the POS-tagger is able to 
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perform an appropriate word-tagging. After this the final parsing is made for the extraction of the 
words tagged as nouns in order to be used in the third stage.  

The third and last stage of the processing of words in transcripts, targets on topic detection. The 
idea is to use lexical chains (Stokes, Carthy and Smeaton 2004) and lexical similarity upon the nouns 
into the transcript. In order to implement this it is necessary to define the window length for the lexical 
chaining and the measure of calculating the similarity of the words in each window. Test results until 
now give us 5 to 7 words as a satisfying window length spotting the expected limits of topics in the 
test data set. Similarity between the words in each window is currently calculated using WordNet 
(Miller et alii 1990). 

Briefly, the whole procedure for topic detection starts with noun extraction from the video 
transcript. The similarity of the first nouns, whose number is defined by the window length, is 
calculated and stored. Then the window moves forward one noun and the similarity of the new 
window is calculated again and stored. The same procedure is followed until the window has passes 
upon all nouns; finally all the calculated similarities are compared. This comparison shows how the 
similarity between nouns goes up and down as the window passes from the first to the last noun in the 
transcript. Between the words that the similarity apparently decreases, the possibility of a topic change 
increases. This approach, combining the sentence-grouping described at stage two of parsing the 
transcript, and the pauses traced at stage one, provides a good estimation of where the topics start and 
end. This estimation is made available to the PCFG Parser. 

In the next version of the semantic recognizer, actual ontologies will be used to facilitate better 
performance in the identification of semantic features as well as to perform semantic event extraction 
from news stories identified. 

 
4.4 Probabilistic Parsing 

As already stated, the temporal structure characteristic for a news broadcast format may be modeled as 
a probabilistic context free grammar (PCFG) with probabilities associated with production rules. This 
is a probabilistic extension of a Context-Free Grammar that is found to be very efficient in video 
recognition tasks (see for example Ivanov and Bobick 2000). The extension is implemented by adding 
a probability measure to every production rule: 

a  L  [p] 
This probability is a conditional probability of the production being chosen, given that non-

terminal a is up for expansion (in generative terms). Saying that a probabilistic grammar is context-
free essentially means that the rules are conditionally independent and, therefore, the probability of the 
grammar generating a particular complete derivation is simply the product of the probabilities of rules 
participating in the derivation.  

In order to integrate story segmentation and classification information, the scenario PCFG is based 
on the news segmentation model that contains all the different parts of a news story and news 
broadcast such as: INTRO, START-OF-PREVIEW, PREVIEW, END-OF-PREVIEW, START-OF-
STORY, PRESENTATION, REPORT, END-OF-STORY, COMMERCIAL, OUTRO etc. These 
structural components may be inferred by the PCFG parser from tokens coming from the recognizer 
modules using appropriate grammar rules.  

 
4.4.1 Implementation of the Parsing Process 

The implementation of the PCFG parsing process distinguishes between two necessary modules: 
1. The PCFG parser component that receives a PCFG describing the structure of a specific 

type of a news telecast, and 
2. An Environment Initialization module that provides initialization parameters to the system 

including the initialization of the recognizers with respect to the PCFG used. 
 
4.4.1.1 The PCFG parser 

The PCFG parser uses the Probabilistic Extension of the Earley Parsing Algorithm, based on a 
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paper by Stolcke 1995. The key reasons for this decision are: 
- The algorithm performs context-free parsing with probabilities computation. 
- The Earley algorithm is one of the most efficient parsing algorithms, with complexity O(n 

), where n is the total number of the production rules in the grammar. 
- The prediction step of the algorithm gives to the parser the opportunity to have an overall 

control of the recognizers. 
Earley parser is a combined top/down bottom/up parsing algorithm that spans the parse tree on 

both directions. It has been proved that its performance is at worst O(n) (Earley 1968). To be more 
accurate, rather than using a span tree, the Earley parser uses the concept of a chart, where every edge 
represents a production rule. 

The algorithm proceeds in three steps: 
- Prediction: The prediction step is used to hypothesize the possible continuation of the 

input based on the current position in the parse. Prediction essentially expands one branch 
of the grammar down to the set of its leftmost leaf nodes to predict the next possible input 
terminals. At this step, any edge corresponding to predicted production rules is added to 
the chart as a pending (or active) edge. 

- Scanning: Scanning step simply reads an input symbol and matches it against all pending 
states for the next iteration. When a pending state is matched, a terminal rule is added to 
the chart, and the pending state becomes inactive. 

- Completion: The completion step updates pending derivations. When a production rule has 
finished, it converts the corresponding edge to a completed one. 

When the parsing is finished, the algorithm walks through the chart and exports the parsing tree 
from the production rules that have been completed. 

The probabilistic extension of the Earley parsing algorithm uses a PCFG, i.e. a context-free 
grammar with probabilities attached to each production rule. During parsing, the algorithm computes 
two kinds of probability metrics: 

- A forward probability, which represents the probability of the whole parse tree.  
- An inner probability, which represents the probability for every individual parse step.  

The forward probability can be used to choose the most probable parse among many completed 
parses and the inner probability is used for clever pruning, where we can define probability thresholds 
and reduce the size of the parse tree accordingly.  

The ambiguity of the input tokens due to the probabilistic nature of the recognizers affects 
computed probabilities at the scanning step of the algorithm. In this way, the values of inner and 
forward probabilities will weight competing derivations not only by the typicality of corresponding 
production rules, but also by the certainty about the input symbol at each step. 

We have introduced some modifications to the parsing algorithm described above. One major 
change is the ability to add many candidate input tokens to the chart at every scanning step (note that 
the probabilistic Earley algorithm described above adds only one token symbol at every scanning 
step). This modification was necessary to address the need to use an arbitrary number of recognizers 
working in synch and each producing a series of tokens along with their likelihood. Some of these 
candidate symbols can be erroneous, but this does not represent a problem for our implementation, 
because candidate symbols not leading to further rule productions are discarded and do not affect the 
continuation of parsing.   

Another important modification is the use of the prediction step of the algorithm so as to guide the 
recognizers. The prediction step of the algorithm gives the parser the opportunity to have an overall 
control of the recognizers, by giving them information of the predicted forthcoming tokens. In this 
way, we achieve overall system efficiency, by letting recognizers search for particular tokens in a 
specific part of the audio-visual input.  

Another major aspect is the aspect of time and its importance in the overall parsing process. 
Parsing of input works time-incrementally. At every parsing cycle, parser tracks the duration of the 
input parsed. Parsing advances for the remaining of input and recognizers return tokens from a specific 
time point and for a specific duration. Time constraints also affect parsing at the completion step of the 
algorithm, where some active rules (edges) are discarded if their time duration exceeds current time 
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limits of parsing. The concept of time helps us reduce error productions resulting from error 
recognitions from recognizers, providing a means for error correction. The time concept is 
encapsulated in the probabilistic grammar, where every rule includes a time-duration feature. 
Moreover the time information, as accumulated during parsing, provides the means to make the actual 
segmentation of the telecast identifying where each segments starts and ends.  

For the implementation of the parser we have used Javachart parser 
(http://nlpfarm.sourceforge.net/javachart/) as our implementation framework. The Javachart parser 
implements a bottom-up chart parsing algorithm and uses features for every edge in the chart. In our 
implementation we altered the main parsing algorithm to function as a probabilistic Earley parser. 

 
4.4.1.2 Environment Initialization 

The Environment Initialization Module will provide system initialization, according to the “working 
environment”. The working environment encapsulates specific parameters of the system functionality, 
according to the audio-visual input. For example, analyzing CNN’s news telecast will require to use 
different parameters from analyzing BBC news (the appropriate images representing the 
ANCHORMAN_TOKEN is different for these two examples). The Environment Initialization Module 
will parameterize recognizers, may give appropriate information to the parser about which recognizers 
are available for every telecast analysis, or it can “map” tokens between the grammar and the 
recognizers by simply informing recognizers about the actual data that the tokens consist of (e.g. 
giving information to the video recognizer that the ANCHORMAN_TOKEN is the appearance of an 
instance of the image of John Foo). The module may also provide a user interface for manual 
initialization of working parameters. 

For advanced functionality, the module must use already developed ontologies that describe 
specific low level features. (e.g., the sample images or voice patterns of the possible newscasters in a 
news telecast) in order to pass this information to the recognizers for appropriate feature extraction 
from the audiovisual signal. 

 
4.4.2 Training the Probabilistic Grammar 

The training of the grammar will be performed by parsing “perfect” tokenizations of a set of news 
telecasts. As in traditional feature grammar training methods, the number of times each production 
rule is expanded the higher is its final probability measure. The algorithm that will be employed is 
described in (Ivanov and Bobick 2000). 

The “perfect” token representations of a telecast can either be created manually or with the 
assistance of a semi-automated annotation tool, where the user is called to correct the output of tokens.  

 
4.5 Segmentation Description Creator Module 

The Segmentation Description Creator Module (SDCM) will create the final output of the system, an 
MPEG7 compliant XML document with the segmentation and semantic information metadata. In 
order to produce this XML document, the most probable parse tree of the parsing phase will be used 
along with the information of the detected semantic events from the semantic recognizer. The News 
Ontologies will also be used in order to find additional information regarding the semantic content of 
the detected segments (i.e. news stories). 

 
5 The parser in detail and an example of its operation and the communication 
with the recognizers 

5.1 The parsing algorithm in detail 

Before describing the overall operation of the algorithm, we will give the basic notation used later on. 
The input string is denoted as x. |x| is the length of x. Individual input symbols are identified by 
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indices starting at 0: x0,…,x|x|-1. The input alphabet is denoted as Σ. Substrings are identified by 
beginning and end positions xi,...j. The capital letters X, Y, Z … denote non-terminal symbols. Latin 
lowercase letters a, b, c … are used for terminal symbols. Strings of mixed non-terminals and 
terminals symbols are written using Greek letters λ, µ, ν … The empty string is denoted by ε.  

An Earley parser builds left-most derivations of strings of tokens based on a given set of context-
free grammar rules. It keeps track of all possible derivations that are consistent with the input string up 
to a certain point. As the input gets processed the set of possible derivations, each corresponding to a 
parse, can either expand as new choices are introduced, or shrink as a result of resolved ambiguities. 

The parser keeps a set of states for each position in the input, describing all pending derivations. 
These states sets together form the Earley chart. A state is of the form: 

i : kX  λ.µ 
where X is a non-terminal of the grammar, λ and µ  are strings of non-terminals and/or terminals, and i 
and k  are indices into the input string. States are derived from productions in the grammar. The above 
state is derived from a corresponding production 

X  λ µ 
with the following semantics: 

- The current position in the input is i i.e. x0,…,xi-1 have been processed so far. The states 
describing the parser state at position i are collectively called state set i. Note that there is 
one more state set than input symbols: set 0 describes the parser state before any input is 
processed, while set |x| contains the states after all input symbols have been processed. 

- Non-terminal X was expanded starting at position k in the input, i.e., X generates some 
substring starting at position k. 

- The expansion of X preceded using the production X  λµ, and has expanded the right-
hand side (RHS) λµ up to the position indicated by the dot. The dot thus refers to the 
current position i.  

A state with the dot to the right of the entire RHS is called a complete state, since it indicates that 
the left-hand side (LHS) non-terminal has been fully expanded. 

The operation of the parser is defined in terms of the three operations (prediction, scanning and 
completion) that consult the current set of states and current input symbol, and add new states to the 
chart. The three types of transitions operate as follows: 

- Prediction: For each state  
i : kX  λ.Yµ 

where Y is a non-terminal anywhere in the RHS, and for all rules Y v expanding Y, add 
states  

i : iY  .v  
A state produced by prediction is called a predicted state. Each prediction corresponds to 
a potential expansion of a non-terminal in a left-most derivation. 

- Scanning: For each state  
i : kX  λ.αµ 

where α is a terminal that matches the current input xi, add the state  
i + 1: kX  λα.µ 

(move the dot over the current symbol). A state produced by scanning is called a scanned 
state. Scanning ensures that the terminals produced in a derivation match the input string.   

- Completion: For each complete state 
i : jY Yk  v. 

- and each state in set j, j<=i, that has Y to the right of the dot,  
j: kX  λ.Yµ 

add the state  
i : kX  λY.µ 

(move the dot over the current non-terminal). A state produced by completion is called a 
completed state. Each completion corresponds to the end of a non-terminal expansion 
started by a matching prediction step.  

To complete the description we need only specify the initial and final states. The parser starts out 
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with: 
0:  0  .S 

where S is the start symbol of the grammar. After processing the last symbol, the parser verifies that: 
l : 0  S. 

has been produced (among possible others), where l is the length of the input x. When the parsing is 
finished, the algorithm walks through the chart and exports the parsing tree from the production rules 
that have been completed (complete states). 

The probabilistic Earley parsing algorithm operates on PCFGs. As mentioned before the 
probabilistic extension of the Earley algorithm computes inner and forward probabilities for every 
edge in the chart. Forward probability represents the likelihood of the parsed input from position 0 and 
up to current position whereas inner probability represents the likelihood of the expansion of the input 
from a given non-terminal – in other words from a position k – and up to current position. During a 
run of the parser both probabilities are attached to each state and updated incrementally as new states 
are created through every one of the three types of transitions.  

The forward and inner probabilities of states are denoted in brackets after each state, e.g., 
i : kX  λ.Yµ  [α,γ] 

is shorthand for α = α i (kX  λ.Yµ),     γ = γi ( kX  λ.Yµ)  
For every step (prediction, scanning, completion), the algorithm performs additional accumulations 

(Ivanov and Bobick 2000, Stolcke 1995): 
- Prediction (probabilistic) 

 i : kX  λ.Ζµ  [α,γ]  ⇒   i :iY  .v  [ α' , γ' ] 
for all productions Y  v. The new probabilities can be computed as 

α'  +=  α R(Z L

∗

⇒ Y) P(Y v) 
γ' = P(Y v) 

The R(Z L

∗

⇒ Y) factor is an updated forward probability that accounts for the sum of all 
paths probabilities linking Z to Y. 

- Scanning (probabilistic) 
i : kX  λ.αµ  [α,γ] 

⇒   i + 1: kX  λα.µ ,  [α',γ'] 
for every α, P(α)>0 
New values of α' and γ΄ are: 

α' = α ( i : kX  λ.αµ ) P(α) 

γ΄ = γ ( i : kX  λ.αµ ) P(α) 
The ambiguity of the input tokens due to the probabilistic nature of the recognizers affects 
computed probabilities at the scanning step of the algorithm. In this way, the values of 
inner and forward probabilities will weight competing derivations not only by the 
typicality of corresponding production rules, but also by the certainty about the input 
symbol at each step 

- Completion (probabilistic) 
i : jY  v.  [α'',γ''] 
     ⇒     i : kX  λΖ.µ  [α',γ']     
j : kX  λ.Ζµ  [α,γ]    

for all Y, Z such that R(Z
∗

⇒Y) is nonzero and Y v is not a unit production, then  

α'  +=  α γ'' R(Z
∗

⇒Y) 

γ'  +=   γ γ'' R(Z
∗

⇒Y) 
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where R(Z
∗

⇒Y) is a probabilities relation used to collapse all unit completions in a single 
step. 
 

5.3 Example for the operation of the parser 

Consider a simple news telecast that starts with a news story followed by (a) a weather forecast and a 
financial news story or (b) a commercial and a second news story. A news story consists of a 
presentation (the anchor presents the story) and a report (the main part of the news story). A financial 
story contains an introduction and the story (consisting again of a presentation and a report just as an 
ordinary news story. A presentation is found when the video recognizer returns a token signifying the 
appearance of the anchor’s face. A report is recognized when the audio recognizer finds speech in the 
audio signal or the video recognizer finds some text caption or the semantic recognizer finds a topic 
change. A commercial is found when some black frames appear in the telecast. The weather forecast 
segment is characterized by a map with temperatures (found by the video recognizer). The 
introduction to a financial story is spotted by the dollar sign frames or by the appearance of music in 
the audio signal. This news telecast structure can be captured by the following grammar (non-terminal 
symbols start with an upper case letter, terminals start with lower case letters):   

S  Story SecondPart   [1.0] 
Story  Presentation Report  [1.0] 
SecondPart  Commercial Story [0.4] 
SecondPart  Weather FinancialStory [0.6] 
FinancialStory  FinancialIntro Story [1.0] 
Presentation  v_anchor_face  [1.0] 
Report  a_speech   [0.2] 
Report  v_text   [0.3] 
Report  s_topic_change  [0.5] 
Commercial  v_black_frames  [1.0] 
Weather  v_temperature_map  [1.0] 
FinancialIntro  v_dollar_sign  [0.7] 
FinancialIntro  a_music  [0.3] 

Note that in the grammar we have included special production rules (called token production rules) 
to capture how the different parts of news telecast are produced from specific tokens of the audio, 
video and semantic recognizers. Tokens coming from the audio recognizer start with a_ while tokens 
from the video recognizer start with v_ and tokens from the semantic recognizer start with s_. The 
token production rules of the grammar essentially model how a presentation, a report, a commercial, a 
weather forecast and an introduction to a financial story are recognized.  

Using the above grammar (we omit probabilities’ computation for simplifying the example) the 
parser start with the following state set: 

initial state: 0: 0   .S 
predicted states: 0: 0S  .Story SecondPart 

0: 0Story  .Presentation Report 
0: 0Presentation  .v_anchor face 

At this point the parser predicts (see predicted token productions above) that the next token should 
be v_anchor face and calls the video recognizer. Let us assume that the video recognizer finds this 
specific token and returns it to the parser. The parser enters state set 1 with the following states: 

scanned states: 1: 0Presentation  v_anchor_face. 
completed states: 1: 0Story  Presentation.Report 
predicted states: 1: 1Report  .a_speech 

1: 1Report  .v_text 
1: 1Report  .s_topic_change 

Now the parser predicts (see predicted token productions above) that the next token could be 
a_speech from the audio recognizer signifying that this part of the broadcast contains speech in the 
audio signal or v_text from the video recognizer signifying that there is some text caption in the 
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frames of the video or s_topic_change from the semantic recognizer signifying a topic change. The 
parser calls the three recognizers passing to each one the expected token to be seen next. Let us 
assume that the video recognizer does not find any text caption nor the semantic recognizer finds any 
topic change because this is the first story in the broadcast. The audio recognizer succeeds in finding 
speech in the audio signal and the a_speech token is returned and processed next. This results in the 
following state set 2: 

scanned states: 2: 1Report  a_speech. 
completed states: 2: 0Story  Presentation Report. 

2: 0S  Story.SecondPart 
predicted states: 2: 2SecondPart  .Commercial Story 

2: 2SecondPart  .Weather FinancialStory 
2: 2Commercial  .v_black_frames 
2: 2Weather  .v_temperature_map 

The predictions made now refer to the video recognizer: Tokens v_black_frames, signifying a 
commercial and v_temperature_map, signifying a weather report segment are expected. These two 
predicted tokens are passed to the video recognizer. Let us assume that the video recognizer succeeds 
in finding a series of black frames so it returns to the parser the identified v_black_frames token. The 
state set 3 becomes: 

scanned states: 3: 2Commercial  v_black_frames. 
completed states: 3: 2SecondPart  Commercial.Story 
predicted states: 3: 3Story  .Presentation Report 

3: 3Presentation  .v_anchor face 
The parser predicts that the next token should be v_anchor face and calls the video recognizer. Let 

us assume that the video recognizer finds this specific token and returns it to the parser. The parser 
enters state set 4 with the following states: 

scanned states: 4: 3Presentation  v_anchor_face. 
completed states: 4: 3Story  Presentation.Report 
predicted states: 4: 4Report  .a_speech 

4: 4Report  .v_text 
4: 4Report  .s_topic_change 

Now the parser predicts that the next token could be a_speech from the audio recognizer or v_text 
from the video recognizer or s_topic_change from the semantic recognizer. The parser calls the three 
recognizers passing to each one the expected token to be seen next. Let us assume that the video 
recognizer does not find any text caption nor the audio recognizer finds any speech. However, the 
semantic recognizer succeeds in finding a topic change and the s_topic_change token is returned and 
processed next. Let us further assume that no additional processing of the broadcast is necessary and 
that this is the final token processed. This results in the following state set 5: 

scanned states: 5: 4Report  s_topic_change. 
completed states: 5: 4Story  Presentation Report. 

5: 3SecondPart  Commercial Story. 
5: 0S  Story SecondPart. 
5: 0   S. (final state) 

Having reached state 5: 0   S. and taking into account that the length of the input processed is 5, 
we have reached the desired final state and the input is accepted as valid. Tracing back the appropriate 
complete states it is possible to reconstruct the parse tree pertaining to the specific input processed. 
From the grammar symbols in this parser tree we can logically segment the broadcast. This parse tree 
is shown in the following figure: 
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 S 

Story SecondPart 

Presentation Report Commercial Story 

v_anchor_face a_speech v_black_frames Presentation Report 

v_anchor_face s_topic_change 
 

Figure 2 – An example parse tree resulting from the operation of the parser. 
 
It is apparent from the above parse tree that the telecast processed contains two stories separated by 

a commercial. Note here that in order to achieve a realistic segmentation it necessary that the parser 
receives and processes time information from the recognizers representing the starting time and the 
finishing time for every token returned. It is also necessary that the production rules handle this time 
information appropriately in order to accumulate it as the parse tree is produced. For simplicity we 
have not included these computations in the example presented here. 
 
5. Conclusions and Future Work 

The implementation of the system described in the previous sections has not been finalized yet. The 
current implementation consists of separate recognizer modules along with the basic modules for 
parsing. In order to demonstrate the parsing process the parser operates on a simulated input (tokens) 
from the recognizers as shown in the following figure.  

 
Figure 3 – The demonstrator of the parser operating on simulated input. 

 
In the final demonstrator, a full version of the Semantic Recognizer along with the fully developed 

News Ontologies and the Semantic Description Creator Module will be used to provide the final 
MPEG7 compliant XML description of the segmented and semantically analyzed news telecasts. 

The current parser demonstrator provides a fully operational PCFG parser that uses available 
probabilistic grammars describing specific classes of news telecasts. These probabilistic grammars 
have been manually specified based on observations for the structure of classes of news telecasts 
available in the TRECVID’03 collection. Simulated streams of tokens, as they will be provided by the 
system’s recognizers, have also been specified taking into account the capabilities of the recognizers 
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and the grammars used. This simulated input is given to the PCFG parser for parsing. After parsing 
this simulated input, the parser returns with a set of parse trees along with their probabilities. The 
parse trees contain all the required information (in their inner nodes representing the non-terminals of 
each probabilistic grammar) for the segmentation of the news telecasts that have been used to produce 
each simulated stream of tokens. 

The integration of the actual recognizers in this demonstrator requires the transformation of their 
current output format into token-like form as well as the provision of their functionality using a well 
defined web-services interface. This is currently under implementation. 
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