Big Data and the Cloud Trends, Applications, and Training

Stavros Christodoulakis MUSIC/TUC Lab School of Electronic and Computer Engineering Technical University of Crete

Data Explosion

Data becomes available at a rapid pace

• Forrester estimates that data volume doubles every 18 months for mission critical applications

Difference: real time data from business processes for decision making

- Web site tracking, customer goals, market segments, CRM,..
- Social networking comments, postings, tweets, pictures,...

Data Explosion

- Mobile applications, location based and personal data
- Sensor data, Internet of Things, Web of Things
- One estimate says that 30 Billion devices will be connected in the internet of things by 2020
- DNA sequencing, Space data,...

Big Data Acquisition

Tracking of

- business processes
- products, shipments, distributions
- behavior , activities and distribution of customers
- public assets (road network, water resources, etc.)
- environment, atmosphere, weather, pollution, ...

Big Data Use

Explosion of interest due to

- dramatic drops in the cost of hardware and the increase of capacity and speed
- Proliferation of new sensing devices
- Recognizing their value for real time decision making

Decision makers should base their real time decisions on data not intuition only

Evaluate, improve react in real time in their business process

Making sense of diverse data, understanding customer behavior, define customer segments,

5

Big Data Analytics

Analytics involves

- building models
- **training** the models and estimating their parameters
- validating the models
- applying them in the problem domain
- **visualizing** the results

Big Data Analytics

- Categories of Analytics
 - **Descriptive**: model the past behavior
 - Predictive: forecast based on available data
 - Prescriptive: assess actions, assist decision making
- Analytics tools may involve:
 - Data mining, text mining
 - Statistical and quantitative analytics
 - Predictive analytics tools
 - Data Visualization tools

Big Data Challenges

- Variety: data types, data integration
- Velocity: data production, change, continuous data tracking, speed of interaction
- Volume: archival speed of access
- Veracity: data reliability and trust
- Value: data exploitation for profit,...

Cloud Computing

Cloud computing delivers computing services, data storage, computation, networking, to users through internet infrastructure and standards (service oriented computing)

- Services are offered at any location, any time
- Scalable services (Big Data)
- Services of any quantity that the users want
- Costs based on the resources used

Advantages of Cloud Computing

- Drives computing resources to commoditization and price competition
- Resources are always available
- Services paid according to use. Offers availability and reliability of computing through Service Level Agreements
- Global user reach: services are accessible by web mobiles, etc., at any point, any time

Cloud Offerings

- IaaS: Infrastructure as a Service: Offers services of computing resources
- **PaaS**: Platform as a Service: Offers Services of development tools
- SaaS: Software as a Service: Offers Services of Software applications

Infrastructure as a Service

- Large amount of computing resources to satisfy requests for services for resources from the internet
- Virtualization services allow to pull together physical resources to satisfy the needs of service requests
- Server virtualization functionality abstracts the physical resources and presents them as virtual machines that appear to the application and users as a physical system – Servers may run different OS's
- Hypervisors are management layers that facilitate launching of virtual machines from the virtual disk (Hyper-V,..)

Infrastructure as a Service

- Storage virtualization distributes redundant files or blocks across physical storage
 - Load balancing, pricing billing facilitated
 - Many companies offer storage services for robustness, scalability, reliability, availability, replication control
- Amazon Elastic Computing (EC2) is laaS accessed through REST and SOAP service interfaces.

– Provides Elastic Block Storage with replication

• Major IaaS providers: Amazon, Google, Microsoft

Storage and Processing Services

- **Tiered Storage Architectures** for archival nature applications in the cloud, big data types (broadcasting, video, space data), back up,...
 - 1. PCI Flash Storage, transfer rate 1500MB/sec at 26 US\$ per GB
 - -2.SSD Solid State Drives, t.r. 500MB/sec at 2 US\$ per GB
 - 3. SAS SCSI Disks t.r. 200 MB/sec at .70 US\$ per GB
 - 4. SATA Disks and Tape Drives, t.r. 140-150 MB/sec at .04 US\$ per GB
- Long archival life in new optical disks (preservation, film industry)
- Data placement for system and application data important problem

Storage and Processing Services

Hadoop has become a dominant open source Framework for storage and large scale distributed processing of large data sets in commodity hardware.

Provides HDFS, YARN, MapReduce.

HDFS: distributed filing system, services blocks

YARN: resource manager, tries to place processing tasks near the data, cluster coordinator allocates tasks

MapReduce has become an important programming model for processing Big Data and Cloud applications

- It gives a programmatic model for distributing and parallelizing heavy data processing jobs
- Input is split in appropriate sizes, described with key/value pairs and distributed for parallel map processing.
- Output is in different key/value pairs and sent to a different set of processors for summarizing
- Redundant copies are sent, scheduler checks the progress, for reliability

Storage and Processing Services

- Implementation of Map/Reduce in most platforms
- Elastic MapReduce is an implementation on the Amazon EC2 Storage Cloud Services
- Tradeoff of communication and processing costs
- Criticism for lack of innovation, no complex query processing, learning a new language

Storage and Processing Services

 Amazon Elastic MapReduce includes support for large data bases stored on Hadoop file system with SQL-like language and full Map/Reduce

– No transactions, limited subquery

- Hive: SQL-like offering on top of Hadoop using MapReduce
- Impala: SQL-like on Hadoop on Share Nothing
- HAWO: dbms optimization, HDFS to give work to dbms workers

Data Integration

Data Integration is often a major issue for Big Data Analytics

- Information integration from diverse data types and languages
- The eXtreme Analytics Platform (XAP) supports analytics processing from multiple structured and unstructured sources
 - Runs on a modified version of Hadoop, uses a script language that is converted to MapReduce
- Business Process Execution Language (BPEL), a SOAP Services standard, has been proposed as a language for coordinating data exchange in clouds, passing references to data between services to guarantee correct processing

Continuous Analytics Support

- Applications: weather predictions, stock quotes, steams,..
- Stream processing Frameworks can be deployed on Cloud offerings
- Continuous Analytics as a Service extends DBMS models to provide continuous services through an SQLlike interface to static and streams of data
- SAP HANA One provides real- time analytics for SAP applications on AWS
 - In memory platform, monthly subscription

Continuous Analytics Support

- Storm: real time stream processing Framework based on data flow programming

 In contrast to Map/Reduce which is batch processing
- Storm applications are designed as a DAG where edges are streams and direct data from a node to another
- Processes run indefinitely, until they are killed
- storm-deploy aims to make Storm available on AWS EC2

Database Trends

- The database market is healthy
- 30 Billion US\$, projected 35 Billion by 2017 (Forrester)
- OLTP and DW grow 10% per year

Relational OLTP

- Relational OLTP target to improve performance using Scale Out Architectures
- Scale out Architectures are share nothing architectures using many servers
- Use horizontal partitioning of tables to place data from different tables on the same server (sharding)
- Cheaper by far in comparison to scale up, better reliability
- More complex application software for the sharding, and security issues
- Recent advances aim to automate sharding, resharding, load balancing

Enterprise Data Warehousing (EDW)

- EDWs store data for business intelligence, analytics, etc.
- Use Extract Transform Load (ETL) to move from OLTP to DW
- DW vendors move to offer appliances: purpose built applications tuned to specific environments and workloads.
 - One button deployment, simplified maintenance, support, virtualization, availability, high interconnect,...
- EDWs move to NoSQL, Graph Databases, KeyValue Stores, Document Stores

Graph Databases

- Speedup access to data having many relationships
- Applications in social networks, Facebook, Twitter, LinkedIn, recommendation engines, dependency analysis, etc.
- Neo4j, AllegroGraph, IBM DB2 NoSQL, Graph Store,...

Key Value Stores

- Store key and value pairs
- Can store dynamic number of key value pairs per record
- Fast access to distributed data
- Leave out some SQL features
- DynamoDB (simple key value), Apache Cassandra, Amazon, IBM, Oracle

Document Stores

- Schemaless, records have variable types and many attributes
- Columns can have more than a value
- Nested structure of records
- Apache Couch DB, MarkLogic Server, MongoDB,...

Object Databases

- Tuned to object programming environments
- Objectivity, GemStone,..

Specialized Databases

- Include mobile, cloud, in memory, standalone
- Cloud data bases automate the provisioning, administration, backup, recovery, availability, security, scalability
- No need for data base administrator, backups,..
- Economies of scale through elastic computing

Specialized Databases

- Database as a Service (AWS RDS, simplified DBMS)
- Amazon offers Oracle and Microsoft SQL Server as managed virtual machines
- Amazon Dynamo DB (key value)
- Oracle, Microsoft, Salesforce offerings in the cloud

Network Services and the Cloud

- The Cloud uses internet for offering the services of resources
- This adds orders of magnitude of delay for accessing the data than accessing it through local area nets
- Microsecond access VS tens of milliseconds for going across the US (30 ms only due to speed of light)

Network Services and the Cloud

- Within organizations:
 - Bandwidth of switches 50 Gb/s
 - Personal capacity 1Gb/s
- Border routers for enterprises: 1-10 Mb/s speed depending on the length of cables
- Moving services to cloud represents bandwidth reduction of about 1000 times
- Amazon cost calculations show that even with 10-100 Mb/s bandwidth costs are 75% to 99% of the average bill
- Some predictions that bandwidth supply and demand differences will grow

Distributed Clouds

- Distributed Clouds is the only way to reduce bandwidth demand
- Move data and computation near to consumption
- Programmable private networks can dynamically adjust the data flow over the physical network
- The OpenFlow Protocol (Stanford) permits applications to reprogram the network during the course of the application
- Allow the network to recognize the application and give the agreed services

Federated Distributed Clouds

GENI network (NSF)

- 50 Clouds at Universities and R&D Centers in the US
- A Cloud has 80-100 cores and terabytes of storage
- Cloud is programmable. Can allocate virtual machines anywhere in the net, specify precisely how they interconnect, traffic priorities, etc.

Platform as a Service (PaaS)

PaaS acts as a run time environment that supports a development and on-line collaboration

- Development environments, integration services, workflow facilities, HTML, JavaScript, visualization tools, collaboration services,...
- Services for developers (as opposed to administrators of IaaS)
- Google Application Engine, Microsoft Azure, Salesforce,...

Software as a Service (SaaS) SaaS Provides services directly consumable by end users (as opposed to developers)

- Services like ERP, CRM, etc., are centrally managed and updated
- A problem is that they offer a complete functionality based on a model (of the vendor) that may not be the business model of the customer
- Salesforce, NetSuite, healthcare solutions, transport, logistics, etc.

Cloud Native Workloads

- Data serving, search, social, mobile apps, batch processing
- Web apps (web 2.0), rich internet apps (videos, games)
- NoSQL and HPC for scientific apps
- Batch processing like data mining, BI, disaster recovery, development, testing
- Elasticity and transient usage requirements

Trends and Directions

- Current Public Cloud offerings highly emphasize the fast development of virtual machines as inexpensively as possible
- They are not strong in providing service automation, orchestration, management of workflows
- IaaS is strongly dominated by Amazon, Google, Microsoft, huge investments, difficult to compete
- Emphasis should be placed on higher service layers and their tight integration

Trends and Directions

- Today clouds are highly centralized, non sustainable.
- Develop NaaS giving virtualization to Networks
- Develop distributed federated Clouds moving the execution near the data
- Offer Database as a Service, Messaging as a Service, Identity as a Service, Network as a Service
- Database tuning, self healing, automatic notifications, workflow management, ETL, Hadoop as a Service
- IT as a Service, Service Ontologies

Trends and Directions

- Visualization in the cloud is problematic because the cloud acts as a batch model of computation and network connections are too slow for interaction
 - Use sampling
 - Make map reduce, and cloud dbms's interactive
 - Iterative facetted explorations in the cloud
- Dashboard adaptation, domain visualization

Graduate Level Research

- TUC has several researchers in Big Data and Cloud related topics
- ECE School information systems
 - Data bases, map/reduce, sensor networks, Storm, security, heterogeneous data processing, federated architectures, medical, biomedical, biodiversity applications,..
- Environmental Engineering School

 Water resources, pollution, weather prediction, traffic, energy,...
- Industrial Engineering (business data)
- Mineral Resources (3D earth data, seismic data, space data)

Graduate Level Research

- Difficult in Universities that do not have rich cloud infrastructure and apps
- New Cycles of R&D [J. Zysman, UC Berkeley, describing the approach of the top American Technical Universities]:
 - In a fast moving cloud era there can not be a clean separation between research strategies and innovation strategies.
 - Cloud developments occur in collaboration. Requires fast product delivery, testing, maintenance
 - Filling in the research projects as they go along
 - EU Marie Curie Training programs with industry

MEng Training

- TUC has research oriented MEng, PhD programs
- What is the training that should be given to engineers in 1.5 to 2 years of residence or distance learning to meet the needs of the industry? Distance learning with our platform ?
- Depends on the country..
- Looked at major sites in the US offering jobs and the skills that require
- Major by far demand for software engineering, especially in the areas of Web Applications, Web Services, for years.
- Analytics demand started moving fast, but they may need also business knowledge, data management and software

MEng Training

MEng Training

Big Data, Web and Mobile Services

- Course areas:
 - Big data and Analytics
 - Web Application Development (SE)
 - Service Oriented Engineering
 - Cloud Technologies, Algorithms and Architectures
 - User Interfaces and Visualization
 - Mobile Computing
 - Security
- Selections mostly from other Schools
- Selections in advanced probability and statistics
- Collaborative project with integrated development (4 months)

Conclusions

- Big Data and Cloud Computing has significant advantages for the industry
- There is a long way to go for offering integrated and Big Data and Cloud Services
- The industry needs should influence research and training in the Universities