ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΑΠΟΘΗΚΗΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ, ΑΝΤΙΚΕΙΜΕΝΩΝ ΜΑΘΗΜΑΤΩΝ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΩΝ ΑΠΟΤΙΜΗΣΗΣ ΜΕ ΒΑΣΗ ΤΟ ΜΟΝΤΕΛΟ ΨΗΦΙΑΚΩΝ ΒΙΒΛΙΟΘΗΚΩΝ METS

Στυλιανάκης Γεώργιος

Πολυτεχνείο Κρήτης

Τμήμα Ηλεκτρονικών Μηχανικών & Μηχανικών Ηλεκτρονικών Υπολογιστών

Εξεταστική Επιτροπή

Καθηγητής Σ. Χριστοδουλάκης (Επιβλέπων)
Επίκουρος Καθηγητής Β. Σαμολαδάς
Αναπληρωτής Καθηγητής Ε. Πετράκης

Χανιά, Μάιος 2008
Περίληψη

Οι έννοιες της μάθησης και της εκπαίδευσης, έχουν αποκτήσει ιδιαίτερο βάρος και νέο περιεχόμενο τα τελευταία χρόνια εξαιτίας των μεγάλων κοινωνικών και οικονομικών ανακατατάξεων που τροφοδοτούνται και τροφοδοτούν με τη σειρά τους τις χαρακτηριστικές τεχνολογικές εξελίξεις στον πυρήνα των οποίων βρίσκονται οι Τεχνολογίες Πληροφορικής και Επικοινωνιών (ΤΠΕ). Η γνώση και η εκπαίδευση αναδεικνύονται σε χρήσιμους οικονομικούς συντελεστές που μπορούν να επηρεάσουν καθοριστικά την επιβίωση των μεμονωμένων προσώπων και των κοινωνικών ομάδων. Στα πλαίσια αυτά αναπτύσσονται και τίθενται σε λειτουργία προγραμμές υποδομές ηλεκτρονικής μάθησης (eLearning) οι οποίες έχουν ως κύριο συστατικό τους εξειδικευμένα πληροφοριακά συστήματα τα οποία επιτρέπουν την ανάπτυξη και διαχείριση προγραμμάτων εκπαιδευτικών υπηρεσιών.

Βασικό συστατικό ενός συστήματος ηλεκτρονικής μάθησης είναι η απόθηκη εκπαιδευτικού υλικού η οποία παρέχει λειτουργικότητα αποθήκευσης, ανάκτησης, αναζήτησης και γενικά διαχείρισης των αντικειμένων του συστήματος τα οποία παραγγείλονται με κατάλληλα μεταδεδομένα ώστε να καθιστάται εφικτή η αποτελεσματική τους διαχείριση.

Στα πλαίσια της παρούσας εργασίας σχεδιάστηκε και υλοποιήθηκε ένα ενοποιημένο σύστημα αποθηκών εκπαιδευτικού υλικού που εντάσσεται σε μια γενικότερη αρχιτεκτονική ενός πληροφορικού συστήματος υποστήριξης αειφανούς μάθησης. Το ενοποιημένο σύστημα αποθηκών βασίστηκε σε ευρέως αποδεκτά πρότυπα ηλεκτρονικής μάθησης και ψηφιακών βιβλιοθηκών και διαχειρίζεται με ενιαίο τρόπο όλους τους τύπους αντικειμένων που υποστηρίζουν μια εκπαιδευτική εμπειρία και αναγνωρίζει Εκπαιδευτικά Αντικείμενα, Αντικείμενα Μαθημάτων και Αντικείμενα Αποτίμησης. Παρέχεται πλήρης λειτουργικότητα διαχείρισης που αφορά στην εισαγωγή, ανάκτηση και αναζήτηση αντικειμένων. Παράλληλα, για την επίπεδη βλέπτηση αναζήτησης αντικειμένων σχεδιάστηκαν και υλοποιήθηκαν μηχανισμοί που βασίζονται σε φίλτρα δίτιμης και ασαφούς λογικής. Επιπλέον, σχεδιάστηκε και υλοποιήθηκε γραφικό εργαλείο ανάπτυξης, διαχείρισης και εκτέλεσης των φίλτρων.
ΔΗΜΟΣΙΕΥΣΕΙΣ

Μέρος της δουλειάς που περιγράφεται σε αυτή τη διπλωματική εργασία έχει δημοσιευτεί στα ακόλουθα Conference Proceedings:

ΠΕΡΙΕΧΟΜΕΝΑ

ΚΕΦΑΛΑΙΟ 1 ..1
ΕΙΣΑΓΩΓΗ ..1
1.1 Γενικά ..1
1.2 Αποθήκες εκπαιδευτικού υλικού...3
1.3 Αναγκαιότητα και σκοπός της εργασίας ...5
1.4 Συνεισφορά της διπλωματικής σε ερευνητικά προγράμματα..................................7
1.5 Δομή του κειμένου ..10

ΚΕΦΑΛΑΙΟ 2 ..12
ΣΧΕΤΙΚΑ ΤΕΧΝΙΚΑ ΠΡΟΤΥΠΑ, ΠΡΟΔΙΑΓΡΑΦΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ... 12
2.1 Εισαγωγή ...12
2.2 Σχετικά πρότυπα και προδιαγραφές ..13
 2.2.1 XML (extensible markup language) ...13
 2.2.2 XQuery ..17
 2.2.3 METS ...24
 2.2.4 LOM ..26
 2.2.5 IMS question and test interoperability (IMS QTI) ...29
 2.2.6 IMS Digital Repository Interoperability (DRI) ...32
2.3 Σχετικές τεχνολογίες ..33
 2.3.1 ECLIPSE ..33
 2.3.2 Berkeley Db Xml ...35
 2.3.3 SOAP /WSDL/ UDDI (υπηρεσίες ιστού) ..44
2.4 Περίληψη ...50

ΚΕΦΑΛΑΙΟ 3 ..52
Η ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΤΟΥ LOGOS..52
3.1 Εισαγωγή ...52
3.2 Αρχιτεκτονική της πλατφόρμας LOGOS ...53
 3.2.1 Αποθήκες υλικού της πλατφόρμας LOGOS ...58
3.3 Δομή Αντικειμένων και χρήση του METS για την αναπαράσταση των
 Εκπαιδευτικών Αντικειμένων, Αντικειμένων Μαθημάτων και Αντικειμένων
 Αποτίμησης: ...59
 3.3.1 Δομή Ψηφιακών Αντικειμένων ...63
 3.3.2 Δομή Εκπαιδευτικών Αντικειμένων ..64
 3.3.3 Δομή Αντικειμένων Αποτίμησης...65
 3.3.4 Δομή των Αντικειμένων Μάθησης ...66
 3.3.5 Καταστάσεις Αντικειμένων ...66
3.4 Το τμήμα της αρχιτεκτονικής του LOGOS που υλοποιήθηκε στην παρούσα
 διπλωματική εργασία...67
3.5 Περίληψη ...68
ΚΕΦΑΛΑΙΟ 4 ... 69
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΑΠΟΘΗΚΩΝ ΥΛΙΚΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΜΑΘΗΜΑΤΩΝ, ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΩΝ ΑΠΟΤΙΜΗΣΗΣ .. 69
4.1 Εισαγωγή .. 69
4.2 Αρχιτεκτονική αποθηκών υλικού Εκπαιδευτικών Αντικειμένων και Αντικειμένων Μαθημάτων
 4.2.1 Αρχιτεκτονική αποθηκών υλικού για συναγερμούς που αφορούν στα Αντικείμενα Μαθημάτων και Εκπαιδευτικά Αντικείμενα ... 70
4.3 Αρχιτεκτονική Αποθήκης Υλικών Αντικειμένων Αποτίμησης .. 74
4.4 Περίληψη .. 77
ΚΕΦΑΛΑΙΟ 5 ... 78
ΜΟΡΦΗ ΚΑΙ ΔΟΜΗ ΨΗΦΙΩΝ ΑΝΑΖΗΤΗΣΗΣ .. 78
5.1 Εισαγωγή .. 78
5.2 Γενικές πληροφορίες σχετικά με τα φίλτρα .. 79
5.3 Boolean LOM φίλτρα .. 80
 5.3.1 Αλγόριθμος αυτόματου μετασχηματισμού φίλτρων σε XQuery ερωτήματα 86
5.4 Fuzzy LOM φίλτρα .. 88
 5.4.1 Φόρμουλα υπολογισμού των Fuzzy LOM φίλτρων ... 90
 5.4.2 Αλγόριθμος αυτόματου μετασχηματισμού φίλτρων σε XQuery ερωτήματα 93
5.5 Τα LOM μεταδεδομένα των φίλτρων και η σημασιολογία τους .. 97
5.6 Περίληψη .. 105
ΚΕΦΑΛΑΙΟ 6 ... 106
Η ΑΠΟΘΗΚΗ ΥΛΙΚΟΥ .. 106
6.1 Εισαγωγή .. 106
6.2 Δεπτομέρειες υλοποίησης των υπηρεσιών ιστού .. 106
6.3 Περιγραφή υλοποίησης των υπηρεσιών ιστού της Αποθήκης υλικού Εκπαιδευτικών Αντικειμένων ... 107
 6.3.1 Search/Expose .. 108
 6.3.2 Submit/Store ... 113
 6.3.3 Request/Deliver ... 122
 6.3.4 Alert/Expose .. 126
6.4 Περιγραφή υλοποίησης των υπηρεσιών ιστού της Αποθήκης υλικού Αντικειμένων Μαθημάτων ... 137
 6.4.1 Search/Expose .. 138
 6.4.2 Submit/Store ... 142
 6.4.3 Request/Deliver ... 151
 6.4.4 Alert/Expose .. 155
6.5 Περιγραφή υλοποίησης των υπηρεσιών ιστού της Αποθήκης υλικού Αντικειμένων Αποτίμησης ... 165
 6.5.1 Search/Expose .. 166
 6.5.2 Submit/Store ... 169
6.5.3 Request/Deliver ... 178
6.6 Περίληψη .. 181

ΚΕΦΑΛΑΙΟ 7 .. 182

ΓΡΑΦΙΚΟ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΗ ΔΗΜΙΟΥΡΓΙΑ ΦΙΛΤΡΩΝ ... 182

7.1 Εισαγωγή .. 182
7.2 Παρεχόμενη λειτουργικότητα .. 183
 7.2.1 Δημιουργία νέου φίλτρου δίτιμης λογικής 184
 7.2.2 Δημιουργία νέου Fuzzy φίλτρου 187
 7.2.3 Αποθήκευση φίλτρου .. 190
 7.2.4 Ανοιγμα φίλτρου ... 191
 7.2.5 Εκτέλεση φίλτρων .. 192

7.3 Περίληψη .. 198

ΚΕΦΑΛΑΙΟ 8 .. 199

ΑΝΑΚΕΦΑΛΑΙΩΣΗ ΚΑΙ ΜΕΛΛΟΝΤΙΚΕΣ ΕΠΕΚΤΑΣΕΙΣ ... 199

8.1 Ανακεφαλαίωση .. 199
8.2 Συνεισφορά της διπλωματικής εργασίας 201
 8.2.1 Το έργο LOGOS: Knowledge-on-Demand for Ubiquitous Learning 202
 8.2.2 Περαιτέρω αξιοποίηση της αποθήκης υλικού Αντικειμένων Αντιπόθεσης στα
 πλαίσια του έργου iQTool - Innovative eLearning Tool for Quality Training Material
 in VET εμπειριών οι οποίες διανέμονται στη συνέχεια σε κατάλληλη μορφή στους
 τελικούς χρήστες .. 202

8.3 Μελλοντικές Επεκτάσεις ... 203
 8.3.1 Επέκταση του γραφικού εργαλείου Query Editor 203
 8.3.2 Αντικατάσταση Berkeley DB XML 203

ΒΙΒΛΙΟΓΡΑΦΙΑ .. 205

ΠΑΡΑΡΤΗΜΑ A ... 206
ΠΑΡΑΡΤΗΜΑ B ... 224
ΚΑΤΑΛΟΓΟΣ ΕΙΚΟΝΩΝ

Εικόνα 2-1: παράδειγμα XML εγγράφου[7]...14
Εικόνα 2-2: XML Scheme[7]..16
Εικόνα 2-3: XML εικόνα στο οποίο θα εφαρμοστούν XQuery ερωτήματα[4]........17
Εικόνα 2-4: Γενική αρχιτεκτονική του Eclipse. Πάνω στο μικρό πυρήνα (Platform Runtime) ...34
Εικόνα 2-5: Η πλατφόρμα ανάπτυξης λογισμικού Eclipse. Το περιβάλλον ανάπτυξης35
Εικόνα 2-6: αρχιτεκτονική Oracle Berkeley Db Xml...36
Εικόνα 2-7: Στην Αρχιτεκτονική των Υπηρεσιών Ιστού συναντώνται τρεις βασικοί ρόλοι: ο
Παροχέας Υπηρεσιών (Service Provider), ο Καταναλωτής Υπηρεσιών (Service Consumer) και ο Κατάλογος Υπηρεσιών (Service Registry). Οι τρεις αυτοί ρόλοι
αλληλεπιδρούν μεταξύ τους μέσω των τεχνολογιών οι οποίες έχουν αναπτυχθεί με
σκοπό την υποστήριξη των YI (SOAP, WSDL, UDDI)..45
Εικόνα 2-8: Η δομή ενός soap μηνύματος...47
Εικόνα 2-9: Η δομή του WSDL...48
Εικόνα 3-1: αρχιτεκτονική πλατφόρμας LOGOS[12]..57
Εικόνα 3-2: Σχέση μεταξύ Αντικειμένων Μαθημάτων, Επικοινωνιών Αντικειμένων,
Αντικειμένων Αποτίμησης, Ψηφιακών Αντικειμένων και Πρωτογενών Αντικειμένων που
δραστηριοποιούνται αποθηκευμένες στις αντίστοιχες αποθήκες και στον Media Server[12]....60
Εικόνα 3-3: Τα κύρια χαρακτηριστικά και δομή ενός METS εγγράφου[12]................22
Εικόνα 3-4: Αντίκειμενική εκπαίδευση Αντικειμένων, Αντικειμένων Μαθημάτων,
Αντικειμένων Αποτίμησης, Ψηφιακών Αντικειμένων, Πρωτογενών Αντικειμένων με
χρήση του METS[12] και οι σχέσεις μεταξύ τους..63
Εικόνα 4-1: αρχιτεκτονική αποθηκών υλικού Επικοινωνιών Αντικειμένων / Αντικειμένων
Μαθημάτων..70
Εικόνα 4-2: αρχιτεκτονική courseware / learning alert repository.....................73
Εικόνα 4-3: αρχιτεκτονική Assessment object repository75
Εικόνα 5-1: σχεδίαση αρχιτεκτονικής δεξιών δομής των φίλτρων............................79
Εικόνα 5-2: παράδειγμα φίλτρου διτμής λογικής το οποίο χρησιμοποιείται για την
ανάζητηση αντικειμένων στην αποθήκης υλικού...81
Εικόνα 5-3: παράδειγμα φίλτρου ασαφώς λογικής που χρησιμοποιείται για την
αποτίμηση αντικειμένου ...89
Εικόνα 5-4: παράδειγμα φίλτρου ασαφώς λογικής που χρησιμοποιείται για την
αποτίμηση αντικειμένου ...90
Εικόνα 6-1: Δομή αυτόματης ανάκτησης Επικοινωνιών Αντικειμένων..........................109
Εικόνα 7-1: Οι επιλογές του μενού ‘File’ δίνει την παρεχόμενη λειτουργικότητα για
dημιουργία νέου φίλτρο με διτμής διτμής ή ασαφώς λογικής, για άνοιγμα ή ή άποθηκευμένος
φίλτρου ή για την αποθήκευση φίλτρου. Στο αριστερό τμήμα του Editor
παρακολουθεί το φίλτρο σε δεξιό μορφή. Στην δεξιά πλευρά του Editor, μπορεί ο
χρήστης να δίνει τιμές στα γνωρισμάτα των στοιχείων. Τέλος έχουμε το action
‘Query’, με την επιλογή του οποίου ο χρήστης εκτελεί το φίλτρο στην επιλεγμένη
αποθήκη υλικού. ...183
Εικόνα 7-2: α) Ο χρήστης επιλέγει να δημιουργήσει φίλτρο διτμής λογικής....................185
Εικόνα 7-3: ο χρήστης πατώνει διπλό click πάνω στο στοιχείο Query/UTerm/LTerm
επεξεργάζεται την φόρμα στον οποία ο χρήστης μπορεί να δώσει τις στα
gnωρισμάτα type, flag. ...186
Εικόνα 7-4: ο χρήστης πατώνει διπλό click πάνω στο όνομα του Atom στοιχείου
επεξεργάζεται την φόρμα στον οποία μπορεί να δώσει τις στα gnωρισματα op,
value,language. Το gnωρισμα language δεν υπάρχει σε όλα τα Atom στοιχεία αλλά
μόνο σε αυτά που αντιστοιχούν σε LOM μεταδεδομένα στα οποία ορίζεται γνώρισμα language...186
Εικόνα 7-5: a) Ο χρήστης επιλέγει να δημιουργήσει φίλτρο ασαφώς λογικής188
Εικόνα 7-6: Ο χρήστης έχει πατήσει διπλό click πάνω σε FuzzyLterm στοιχείο και εμφανίζεται η φόρμα στην οποία ο χρήστης δίνει τιμές στα τυρε, flag weight γνωφίσματα. Η ίδια φόρμα αφορά και τις περιπτώσεις των FuzzyUterm στοιχείων ενώ στα απλά FuzzyAtom στοιχεία δεν υπάρχει το γνώρισμα τυρε και στο FuzzyQuery δεν υπάρχει γνώρισμα weight...189
Εικόνα 7-7: Ο χρήστης έχει πατήσει διπλό click πάνω στο όνομα του Fuzzy Atom το οποίο στην συγκεκριμένη περίπτωση είναι το educational_context_value και εμφανίζεται φόρμα στην οποία ο χρήστης δίνει τιμές στα γνωφίσματα op.value...............................189
Εικόνα 7-8: Ο χρήστης επιλέγει να αποθηκεύσει φίλτρο που έχει επεξεργαστεί191
Εικόνα 7-9: a) Ο χρήστης επιλέγει να ανοίξει αρχείο...192
Εικόνα 7-10: a) Επιλέγουμε την αποθήκη υλικού για την οποία θα εκτελεστεί το φίλτρο...............194
Εικόνα 7-11: Ο χρήστης μπορεί εάν το θέλει να επιλέξει κάποιο LOM στοιχείο το οποίο θα επιστραφεί(η τιμή που έχει το στοιχείο στο αντίστοιχο έγγραφο)μαζί με τα αναγνωριστικά ids των εγγράφων...195
Εικόνα 7-12: Για Boolean filter, στην πρώτη στήλη είναι τα ids των εγγράφων και ακολουθούν στήλες που περιλαμβάνουν τις τιμές των LOM elements που επιλέχθηκαν να εμφανιστούν...195
Εικόνα 7-13: Για Fuzzy filters, στην πρώτη στήλη εμφανίζονται τα ids των εγγράφων, στην μεσαία στήλη εμφανίζεται το rank που αντιστοιχεί σε κάθε έγγραφο και ακολουθούν στήλες με τις τιμές των LOM στοιχείων που επιλέχθηκαν να εμφανιστούν ...196
Εικόνα 7-14: Πατώντας μονό click πάνω στο id κάποιου εγγράφου παίρνουμε την περιγραφή του...196
Εικόνα 7-15: Διάγραμμα ακολουθίας το οποίο περιγράφει την σειρά με την οποία καλύπτει οι υπηρεσίες διαδικτύου των αποθηκών υλικού όταν επιλέγει η εκτέλεση φίλτρου197
Εικόνα 8-1: Διάγραμμα «συνολικής εικόνας» των περιπτώσεων χρήσης ..210
<table>
<thead>
<tr>
<th>Πίνακας</th>
<th>Περίπτωση χρήσης</th>
<th>Νοτίδας</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Κατηγορίες του IEEE LOM</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Τύποι σχέσεων του IEEE LOM</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Πίνακας για την περιγραφή των περιπτώσεων χρήσης όπως προτείνεται από τον Alistair Cockburn</td>
<td>207</td>
</tr>
<tr>
<td>4</td>
<td>«συνοπτικός πίνακας» περιπτώσεων χρήσης</td>
<td>212</td>
</tr>
<tr>
<td>5</td>
<td>περίπτωση χρήσης για την διαχείριση φίλτρων δίτιμης λογικής</td>
<td>214</td>
</tr>
<tr>
<td>6</td>
<td>περίπτωση χρήσης για την διαχείριση φίλτρων ασαφώς λογικής</td>
<td>215</td>
</tr>
<tr>
<td>7</td>
<td>περίπτωση χρήσης για την επεξεργασία φίλτρων δίτιμης λογικής</td>
<td>216</td>
</tr>
<tr>
<td>8</td>
<td>περίπτωση χρήσης για την επεξεργασία φίλτρων ασαφως λογικής</td>
<td>217</td>
</tr>
<tr>
<td>9</td>
<td>περίπτωση χρήσης αποθήκευσης φίλτρου</td>
<td>218</td>
</tr>
<tr>
<td>10</td>
<td>περίπτωση χρήσης για το άνοιγμα φίλτρου</td>
<td>219</td>
</tr>
<tr>
<td>11</td>
<td>περίπτωση χρήσης για την εκτέλεση φίλτρου</td>
<td>221</td>
</tr>
<tr>
<td>12</td>
<td>περίπτωση χρήσης για την επεξεργασία στοιχείου Uterm</td>
<td>222</td>
</tr>
<tr>
<td>13</td>
<td>περίπτωση χρήσης για την επεξεργασία στοιχείου Lterm</td>
<td>223</td>
</tr>
<tr>
<td>14</td>
<td>περίπτωση χρήσης για την επεξεργασία στοιχείου Atom</td>
<td>223</td>
</tr>
<tr>
<td>15</td>
<td>XML Schema των φίλτρων δίτιμης λογικής</td>
<td>236</td>
</tr>
<tr>
<td>16</td>
<td>XML Schema φίλτρων ασαφώς λογικής</td>
<td>249</td>
</tr>
</tbody>
</table>
Ευχαριστίες

Θα ήθελα να ευχαριστήσω τον καθηγητή κ. Σταύρο Χριστοδουλάκη για την επίβλεψη και την καθοδήγησή του κατά τη διάρκεια της εκπόνησης της παρούσας διπλωματικής εργασίας. Επιπλέον, θα ήθελα να τον ευχαριστήσω για τις σημαντικές εμπειρίες που μου προσέφερε κατά τη διάρκεια της εργασίας μου στο Εργαστήριο Διανεμημένων Πληροφορικών Συστημάτων και Εφαρμογών (MUSIC) του Τμήματος Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών του Πολυτεχνείου Κρήτης. Θα πρέπει να ευχαριστώ προκαταβολικά τους καθηγητές κ.Ε. Πετράκη και κ.Β. Σαμολαδά για την ανάγνωση του κειμένου και τις τυχόν παρατηρήσεις τους.

Επίσης, θα ήθελα να ευχαριστήσω την Ξένια Αράπη και τον Νεκτάριο Μουμουτζή οι οποίοι με καθοδήγησαν καθ’ όλη τη διάρκεια εκπόνησης της διπλωματικής.

Ένα θερμό ευχαριστώ στον Μανόλη Μυλωνάκη και Γιώργο Θεοδωράκη, η συνεισφορά των οποίων ήταν καταλυτική για την ολοκλήρωση της εργασίας μου.
Κεφάλαιο 1

Εισαγωγή

1.1 Γενικά

Η έννοια της μάθησης μπορεί να θεωρηθεί ως συνυφασμένη με την ίδια τη ζωή και συνδέεται με την ικανότητα προσαρμογής των ζωντανών οργανισμών στο περιβάλλον τους προκειμένου να επιβιώσουν. Ειδικότερα για τους ανθρώπους, η μάθηση αποτελεί έναν από τους κυρίως τρόπους διατήρησης και εξέλιξης του πολιτισμού καθώς οι συμπεριφορές, οι γνώσεις, οι δεξιότητες και οι αξίες των παλαιότερων γενεών μεταδίδονται στις νεότερες γενεές.

Η μάθηση επιτυγχάνεται έστω άμεσα με την εμπειρία ή μέσω εκπαίδευσης. Δεν είναι τυχαίο ότι όσοι οι ανθρώπινες κοινωνίες εξαλείπονται και γίνονται περισσότερο πολύπλοκες, η ρόλος της εκπαίδευσης ενισχύεται καθώς η εμπειρία από μόνη της δεν επαρκεί στο να μεταδώσει αποτελεσματικά τα αναγκαία στοιχεία (συμπεριφορές, γνώσεις, δεξιότητες) που θα κατακτήσουν εφικτή τη διαίωνιση και την ανάπτυξη της ικανοποιητικότητας. Για παράδειγμα, καθώς η οργάνωση της παραγωγής βασίζεται ολοένα και περισσότερο σε σύνθετες τεχνολογίες και σε πολύπλοκες σχέσεις και αλληλεξαρτήσεις μεταξύ των οικονομικών συντελεστών, η εκπαίδευση των εργαζομένων ώστε να μπορέσουν να αναλάβουν τους αναγκαίους ρόλους που απαιτεί η παραγωγική διαδικασία καθίσταται απολύτως αναγκαία και συνδέεται με τον καταμερισμό της εργασίας που βρίσκεται στη βάση της οικονομικής οργάνωσης.

Στις σύγχρονες κοινωνίες όπου οι ραγδαίες τεχνολογικές εξελίξεις δημιουργούν σε καθημερινές αλλαγές την ικανοποιητική και οικονομική οργάνωση και απαιτούν νέες δεξιότητες για την αποτελεσματική αξιοποίησή τους, οι έννοιες της μάθησης και της εκπαίδευσης αποτελούν ακόμη μεγαλύτερη σημασία. Παρατηρείται, σε παγκόσμιο επίπεδο, η ανάγκη συνεχούς
αναπροσαρμογής των οργανωτικών προτύπων στη λειτουργία των οικονομικών μονάδων και η υιοθέτηση νέων τρόπων παραγωγής και κατανάλωσης καθιστώντας απαραίτητη τη συνεχή εκπαίδευση και κατάρτιση των πολιτών ώστε να μπορέσουν να αξιοποιήσουν δημιουργικά και αποτελεσματικά τις νέες τεχνολογικές δυνατότητες. Η μάθηση έχει μια σημαντική ρόλο στη συγκρότηση των παραγωγικής διαδικασίας και αποτελεί κυρίαρχο πολιτικό στόχο σε όλες τις ανεπτυγμένες κοινωνίες. Ο όρος «δια βίου μάθηση» υποθέτουμε ότι η απόκτηση νέων γνώσεων και δεξιοτήτων αποτελεί πλέον μια δυναμική διαδικασία που συνεχίζεται καθ’ όλη τη διάρκεια της ζωής καθώς εξελίσσεται η τεχνολογία και υιοθετούνται συνεχώς νέα οργανωτικά πρότυπα και τεχνολογικές καινοτομίες σε όλες τις πτυχές της δημόσιας και ιδιωτικής ζωής. Η γνώση και η εκπαίδευση αναδεικνύονται σε χρήσιμους οικονομικούς συντελεστές που μπορούν να επηρεάσουν καθοριστικά την επιβίωση των μεμονωμένων προσώπων και των οικονομικών ομάδων.

Σε αυτό το πλαίσιο, οι παραδοσιακές μορφές εκπαίδευσης καθίστανται πολλές φορές αναπαραγόμενα λόγω των ψηφιακών περιορισμών που συνεπάγονται και του σημαντικού κόστους τους. Χωρίς να καταργούνται, οι παραδοσιακές μορφές εκπαίδευσης εμπλουτίζονται με νέες προσαρμογές που έχουν αυξηθεί τεχνολογική βάση: Αναπτύσσονται και τιθένται σε λειτουργία προηγμένες υποδομές ηλεκτρονικής μάθησης (eLearning), οι οποίες έχουν ως κύριο συστατικό τους εξαιρετικά ευέλικτη πληροφοριακή συστήματα τα οποία επιτρέπουν την ανάπτυξη και διαχείριση προηγμένων εκπαιδευτικών υπηρεσιών. Η ανάπτυξη αυτών των συστημάτων αξιοποιεί όχι μόνο τις τεχνολογικές εξαλλώσεις στην πληροφορική και τις επικοινωνίες αλλά και στα πεδία της γνωσιακής επιστήμης και των εκπαιδευτικών-παιδαγωγικών θεωριών. Λειτουργούν ήδη πολλά συστήματα ηλεκτρονικής μάθησης που παρέχουν εκπαίδευση οπουδήποτε και οποτεδήποτε αξιοποιώντας όχι μόνο το Διαδίκτυο αλλά και άλλες τεχνολογίες επικοινωνιών όπως η αλληλεπιδραστική τηλεόραση και τα κινητά τηλέφωνα. Το κόστος της εκπαίδευσης μειώνεται ενώ παράλληλα πολλαπλασιάζονται οι ευκαιρίες μάθησης που προσφέρονται.

Μεγάλες επενδύσεις γίνονται για την ανάπτυξη και χρήση εκπαιδευτικού υλικού το οποίο προσφέρεται σε ψηφιακή μορφή. Ο όρος «εκπαιδευτικά αντικείμενα» χρησιμοποιείται για να περιγράφει αυτή τη μορφή εκπαιδευτικού υλικού. Τα εκπαιδευτικά αντικείμενα αναπτύσσονται ως αυτόνομες και επαναχρησιμοποιήσιμες μονάδες που περιγράφονται με κατάλληλα και μεταδεδομένα χρησιμοποιώντας κατάλληλες γλώσσες αναπαράστασης (συνήθως βασισμένες στην XML). Η δημιουργία ενός μαθήματος σε ψηφιακή μορφή απαιτεί την κατάλληλη επιλογή εκπαιδευτικών αντικειμένων και την οργάνωσή τους. Για την αποτελεσματική
Κεφάλαιο 1 – Εισαγωγή

dιαχείριση αυτών των αντικειμένων, είναι απαραίτητη η ύπαρξη κατάλληλων αποθηκών (repositories) οι οποίες δίνουν τη δυνατότητα αποθήκευσης, ανάκτησης, αναζήτησης και εν γένει διαχείρισης του εκπαιδευτικού υλικού ώστε να καθίσταται δυνατή η μεγαλύτερη δυνατή επαναχρησιμοποίηση του.

Παράλληλα, αναπτύσσονται και υιοθετούνται κατάλληλα πρότυπα ηλεκτρονικής μάθησης που εξασφαλίζουν τη διαλειτουργικότητα μεταξύ των συστημάτων ηλεκτρονικής μάθησης. Η χρήση αυτών των προτύπων καθίσταται αναγκαία στις αποθήκες εκπαιδευτικού υλικού προκειμένου να είναι δυνατή η διασύνδεσή τους με άλλα συστήματα όπως συστήματα διανομής και συστήματα δημιουργίας και διαχείρισης περιεχομένου. Η χρήση προτύπων εξασφαλίζει την αναζητήσια του περιεχομένου από το λογισμικό με αποτέλεσμα να δίνεται η δυνατότητα διαχωρισμού και χαρτογράφησης των συστημάτων χωρίς να χάνεται το υλικό που έχει αναπτυχθεί και χωρίς να απαξιώνονται οι επενδύσεις που έχουν γίνει για την ανάπτυξη του υλικού.

1.2 Αποθήκες εκπαιδευτικού υλικού

Στο (Higgs, 2003) επισημαίνεται η ανάγκη για μοντέλα αποθηκών εκπαιδευτικού υλικού για την αποτελεσματική υποστήριξη λειτουργικότητας διαχείρισης στα συστήματα ηλεκτρονικής μάθησης. Το προτεινόμενο σύνολο λειτουργιών περιλαμβάνει τα εξής:

1. Αναζήτηση (search/find) – Δυνατότητα εντοπισμού κατάλληλων εκπαιδευτικών εκπαιδευτικών αντικειμένων με βάση κάποιες παραμέτρους αναζήτησης περιλαμβανομένων και λειτουργιών φυλλομετρήσεως (browsing).

2. Ζήτηση (request) – Δυνατότητα υποβολής αιτήματος για να ανακτηθεί ένα Εκπαιδευτικό Αντικείμενο που έχει εντοπισται.

3. Ανάκτηση (retrieve) – Λήψη ενός εκπαιδευτικού αντικειμένου το οποίο έχει ζητηθεί.

4. Υποβολή (submit) – Δυνατότητα υποβολής ενός εκπαιδευτικού αντικειμένου στην αποθήκη για αποθήκευση.

5. Αποθήκευση (store) – Τοποθέτηση ενός εκπαιδευτικού αντικειμένου που έχει υποβληθεί και απόδοση μοναδικού αναγνώριστικού σε αυτό ώστε να καθίσταται εφικτός ο μετέπειτα εντοπισμός του.
6. Συγκομιδή (gather) – Λήψη μεταδεδομένων για αντικείμενα τα οποία βρίσκονται σε άλλες αποθήκες για την υποστήριξη ευρύτερων αναζητήσεων.

7. Δημοσίευση (publish) – Παροχή μεταδεδομένων σε άλλες αποθήκες.

Το παραπάνω σύνολο λειτουργιών μπορεί να προσαρμόζεται κατά περίπτωση στα πλαίσια του σχεδιασμού μιας αποθήκης προκειμένου να καλύπτουν αυτούς τους ειδικότερους ανάγκες διαχείρισης με την υλοποίηση του απαραίτητου υποσυνόλου λειτουργιών.

Η προδιαγραφή IMS Digital Repositories Interoperability (DRI)[10] παρέχει συστάσεις για ένα ορισμένο σύνολο λειτουργιών και πρωτοκόλλων που εναρμονίζεται με την παραπάνω προσέγγιση και την εμπλουτίζει. Η προδιαγραφή λαμβάνει υπόψη της ένα ευρύ φάσμα από μορφές περιεχομένου και καθότατα εφικτή την εφαρμογή τους τόσο σε αποθήκες εικαστικού υλικού όσο και σε ψηφιακές βιβλιοθήκες ένας γένεις. Οι προτεινόμενες λειτουργίες παρέχουν τη δυνατότητα υποβολής/αποθήκευσης (submit/store) και ζήτησης/διανομής (request/deliver) πόρων από και προς την αποθήκη όπως επίσης και τη δυνατότητα αναζήτησης/έκθεσης (search/expose) και συγκομιδής/έκθεσης (gather/expose) Εκπαιδευτικών Αντικειμένων που βρίσκονται σε διάφορες αποθήκες.

Η προδιαγραφή χρησιμοποιεί διάφορες δημοφιλείς τεχνολογίες, περιλαμβανομένων τεχνολογιών που βασίζονται στην XML όπως η XQuery, το SOAP κ.λ.π. Τείνει να έχει τη μορφή καλών πρακτικών (best practices) που προσδιορίζουν τους υγιείς προτύπους προδιαγραφές μπορούν να χρησιμοποιηθούν για να επιτευχθεί διαλειτουργικότητα. Μπορεί να αποτελέσει τη βάση για το σχεδιασμό αποθηκών οι οποίες παρέχουν τη λειτουργικότητα αυτής με την τυπική υπηρεσία στοιχείων (web services) διότι της μεγαλύτερη δυνατή ευελιξία στη διασύνδεσή τους με άλλα συστήματα λογισμικού.

Στα πλαίσια της παρούσας εργασίας προκειμένου να ανταποκριθούμε στις απαιτήσεις σχεδιασμού και υλοποίησης ενός Ενοποιημένου Συστήματος Αποθηκών Εικαστικού Υλικού βασιστήκαμε στην προδιαγραφή IMS DRI για να καθορίσουμε το επιθυμητό υποσύνολο λειτουργιών σε συνδυασμό με τη χρήση δημοφιλών πρωτόκολλων από το χώρο των ψηφιακών βιβλιοθήκες και της ηλεκτρονικής μάθησης.
1.3 Αναγκαιότητα και σκοπός της εργασίας

Η εργασία αυτή αποτελεί τμήμα μια ευρύτερης ερευνητικής δραστηριότητας που αποσκοπεί στην αποτελεσματική υποστήριξη καινοτόμων, εξατομικευμένων εκπαιδευτικών υπηρεσιών καινοτόμων μάθησης (ubiquitous learning - uLearning) χρησιμοποιώντας πολλά κανάλια διανόησης (διαδίκτυο, κινητές συσκευές, ψηφιακή τηλεόραση) για την παροχή εκπαιδευτικών εμπειριών στους εκπαιδευόμενους. Η βάση του όλου συστήματος είναι μια σειρά από καλά ορισμένες υλικού οι οποίες δίνουν τη δυνατότητα σταδιακής δημιουργίας εκπαιδευτικών εμπειριών χρησιμοποιώντας πολλά κανάλια διανόησης (διαδίκτυο, κινητές συσκευές, ψηφιακή τηλεόραση) για την παροχή εκπαιδευτικών εμπειριών στους εκπαιδευόμενους. Η βάση του όλου συστήματος είναι μια σειρά από καλά ορισμένες υλικού οι οποίες δίνουν τη δυνατότητα σταδιακής δημιουργίας εκπαιδευτικών εμπειριών χρησιμοποιώντας πολλά κανάλια διανόησης (διαδίκτυο, κινητές συσκευές, ψηφιακή τηλεόραση) για την παροχή εκπαιδευτικών εμπειριών στους εκπαιδευόμενους. Η βάση του όλου συστήματος είναι μια σειρά από καλά ορισμένες υλικού οι οποίες δίνουν τη δυνατότητα σταδιακής δημιουργίας εκπαιδευτικών εμπειριών χρησιμοποιώντας πολλά κανάλια διανόησης (διαδίκτυο, κινητές συσκευές, ψηφιακή τηλεόραση) για την παροχή εκπαιδευτικών εμπειριών στους εκπαιδευόμενους. Η βάση του όλου συστήματος είναι μια σειρά από καλά ορισμένες υλικού οι οποίες δίνουν τη δυνατότητα σταδιακής δημιουργίας εκπαιδευτικών εμπειριών χρησιμοποιώντας πολλά κανάλια διανόησης (διαδίκτυο, κινητές συσκευές, ψηφιακή τηλεόραση) για την παροχή εκπαιδευτικών εμπειριών στους εκπαιδευόμενους. Η βάση του όλου συστήματος είναι μια σειρά από καλά ορισμένες υλικού οι οποίες δίνουν τη δυνατότητα σταδιακής δημιουργίας εκπαιδευτικών εμπειριών χρησιμοποιώντας πολλά κανάλια διανόησης (διαδίκτυο, κινητές συσκευές, ψηφιακή τηλεόραση) για την παροχή εκπαιδευτικών εμπειριών στους εκπαιδευόμενους. Η βάση του όλου συστήματος είναι μια σειρά από καλά ορισμένες υλικού οι οποίες δίνουν τη δυνατότητα σταδιακής δημιουργίας εκπαιδευτικών εμπειριών χρησιμοποιώντας πολλά κανάλια διανόησης (διαδίκτυο, κινητές συσκευές, ψηφιακή τηλεόραση) για την παροχή εκπαιδευτικών εμπειριών στους εκπαιδευόμενους.
1. Εκπαιδευτικά Αντικείμενα (Learning Objects) τα οποία αποτελούν τα ελάχιστα δομικά συστατικά μάθησης τα οποία μπορούν να επαναχρησιμοποιηθούν σε διαφορετικές εκπαιδευτικές εμπειρίες και περιγράφονται με κατάλληλα μεταδομένα.

2. Αντικείμενα Αποτίμησης (Assessment Objects) τα οποία μπορεί να είναι ερωτηματολόγια ή μεμονωμένες ερωτήσεις αξιολόγησης. Τα αντικείμενα αυτά μπορούν να θεωρηθούν ως ειδικές κατηγορίες Εκπαιδευτικών Αντικειμένων που ακολουθούν συγκεκριμένες προδιαγραφές και αποσκοπούν στην αποτίμηση των αποτελεσμάτων της εκπαιδευτικής διαδικασίας.

3. Αντικείμενα Μαθημάτων (Courseware Objects) τα οποία αποτελούνται από ιεραρχίες Εκπαιδευτικών Αντικειμένων και Αντικειμένων Αποτίμησης ενσωματώνοντας και μεταδομένα που αφορούν παρουσίαση και πλοήγηση.

Επιπλέον, στα πλαίσια της παρούσας διπλωματικής εργασίας, υλοποιήθηκε Γραφικό Εργαλείο Αναζήτησης και Παρουσίασης Αντικειμένων που βρίσκονται στις αποθήκες του ενωποιημένου συστήματος με τη δημιουργία φίλτρων αναζήτησης, την αποστολή τους προς εκτέλεση στην κατάλληλη αποθήκη, τη λήψη και παρουσίαση των αποτελεσμάτων.

Η αναπαράσταση των αντικειμένων που διαχειρίζονται οι παραπάνω αποθήκες υλικού είναι ίσως ένα από τα σημαντικότερα στοιχεία της υλοποίησης της παρούσας διπλωματικής. Υιοθετήθηκε μια ευέλικτη προσέγγιση για τον καθορισμό της αναπαράστασης αυτής η οποία βασίστηκε στη χρήση του προτύπου Metadata Encoding and Transmission Standard (METS) το οποίο επηρεάζει το συνδυασμό διαφόρων άλλων σχημάτων περιγραφής μεταδομένων ώστε να καταστεί δυνατή η αναπαράσταση των Εκπαιδευτικών Αντικειμένων, των Αντικειμένων Αποτίμησης και των Αντικειμένων Μαθημάτων[12]. Το METS[9] είναι ένα ευέλικτο και καλά δομιμένο μοντέλο το οποίο λειτουργεί ως περιτύλιγμα (container) για όλα τα μεταδομένα που είναι απαραίτητα για την περιγραφή, πλοήγηση και διατήρηση ψηφιακών πόρων. Ορίζει περιγραφικούς (descriptive), διαχειριστικούς (administrative) και δομικούς (structural) τύπους μεταδομένων καθένας από τους οποίους δίνεται σε μια ξεχωριστή ενότητα ενός εγγράφου METS η οποία συνδέεται με άλλα τμήματα μέσω προσδιοριστών (identifiers). Αυτά τα μεταδεδομένα μπορούν να ακολουθούν οποιοδήποτε επιθυμητό σχήμα και είναι δυνατόν να αποθηκευτούν είτε στο ίδιο το METS εγγράφο είτε σε εξωτερικά αρχεία τα οποία δεκτοδοτούνται από το METS εγγράφο.
Εκτός από το METS, χρειάζεται συνεπώς να οριστούν και τα σχήματα μεταδεδομένων τα οποία χρησιμοποιούνται για την περιγραφή κάθε τύπου αντικειμένων. Για την αναπαράσταση των εκπαιδευτικών μεταδεδομένων και στους τρεις τύπους αντικειμένων που αναπτύχθηκαν, χρησιμοποιείται το LOM[2], το οποίο ορίζει ένα μοντέλο δεδομένων που χρησιμοποιείται για να περιγράφει ένα Εκπαιδευτικό Αντικείμενο και λοιπές ψηφιακές πηγές γνώσεων που χρησιμοποιούνται για την υποστήριξη μάθησης. Για την αναπαράσταση των ερωτήσεων και των ερωτηματολογίων στα Αντικείμενα Αποτίμησης χρησιμοποιήθηκε το QTI[3] της IMS, το οποίο είναι σχεδιασμένο για να κάνει ευκολότερο τον σχεδιασμό και την μεταφορά πληροφορίας μεταξύ e-learning συστημάτων. Η πληροφορία αφορά ερωτήσεις/ερωτηματολογία, απαντήσεις ερωτήσεων/ερωτηματολογίων, στατιστικά αποτελέσματα που προκύπτουν από απαντήσεις ερωτήσεων/ερωτηματολογίων. Για την αναπαράσταση της πληροφορίας πλοήγησης στα αντικείμενα μαθημάτων, χρησιμοποιήθηκε στο μοντέλο IMS SS. Τα πρότυπα που αναφέραμε, θα περιγράψουμε αναλυτικά στο 2ο κεφάλαιο.

Το λογισμικό που σχεδιάστηκε και υλοποιήθηκε στην παρούσα διπλωματική εργασία χρησιμοποιήθηκε στο ερευνητικό έργο LOGOS, ως αναπόσπαστο συστατικό της γενικότερης αρχιτεκτονικής υποστήριξης υπηρεσιών αειφανούς μάθησης (ubiquitous learning – uLearning) που συνδυάζουν πολλαπλές συσκευές-τεχνολογίες διανομής (διαδίκτυο, ψηφιακή τηλεόραση, κινητές συσκευές).

Όφειλουμε, κλείνοντας τη σύντομη αυτή εισαγωγή, να τονίσουμε ότι παρά το γεγονός ότι οι παραπάνω αποθήκες σχεδιάστηκαν και υλοποιήθηκαν στα πλαίσια της γενικότερης αρχιτεκτονικής αειφανούς μάθησης, του LOGOS, διατηρούν την αυτονομία τους και μπορούν να διασωθούν (όλες ή ένα μέρος αυτών) με άλλα συστήματα ηλεκτρονικής μάθησης δεδομένου ότι όλη η λειτουργικότητα που παρέχουν προσφέρεται μέσω υπηρεσιών ιστού οι οποίες βασίζονται σε δημοφιλή πρότυπα μεταδεδομένων (METS, LOM, QTI, IMS SS).

1.4 Συνεισφορά της διπλωματικής σε ερευνητικά προγράμματα

Η παρούσα εργασία όπως ήδη αναφέρθηκε, σχετίζεται στενά με το ερευνητικό έργο LOGOS στο οποίο μετέχει το Εργαστήριο Διανεμημένων Πληροφορικικών Συστημάτων και Εφαρμογών Πολυμέσων του Πολυτεχνείου Κρήτης.

Ο κύριος στόχος του έργου αυτού είναι η δημιουργία μίας πλατφόρμας αειφανούς εκμάθησης (ubiquitous learning – uLearning) η οποία συνδυάζει τη χρήση εκπαιδευτικών αντικειμένων
Κεφάλαιο 1 – Εισαγωγή

που δημιουργούνται μέσω ενός κατάλληλου περιβάλλοντος συγγραφής (LOGOS Authoring Studio) και διανέμονται προς τους εκπαιδευόμενους μέσα από ψηφιακή αναμετάδοση σε διάφορες ψηφιακές τηλεόρασης, μέσω κινητών συσκευών και μέσω του Διαδικτύου.

Οι ειδικότεροι στόχοι του έργου LOGOS είναι οι εξής:

1. Δημιουργία μίας πλατφόρμας «cross-media» για την εκμάθηση μέσω διαδικτύου, χρησιμοποιώντας τον παγκόσμιο ιστό, τα κινητά τηλέφωνα, και τις υπηρεσίες ψηφιακής αναμετάδοσης δεδομένων.

2. Δημιουργία «cross-media» εκπαιδευτικού περιεχομένου με χρήση ειδικού περιβάλλοντος συγγραφής (Authoring Studio) το οποίο χρησιμοποιεί υπάρχοντα ψηφιακά αντικείμενα που βρίσκονται σε εξωτερικούς παρόχους περιεχομένου (content providers) για να δημιουργήσει σταδιακά εκπαιδευτικά αντικείμενα, αντικείμενα μαθημάτων και αντικείμενα αποτίμησης τα οποία αποθηκεύονται σε ειδικές αποθήκες.

3. Έλεγχος και τεκμηρίωση της λειτουργικότητας της νέας πλατφόρμας με εκτεταμένο πειραματισμό για διαπίστωση της ευχρηστίας και λειτουργικότητας της.

Το έργο LOGOS παρέχει ένα ολοκληρωμένο περιβάλλον μεθοδικής ανάπτυξης και διανομής εκπαιδευτικών εμπειριών οι οποίες βασίζονται στην επαναχρησιμοποίηση ψηφιακού υλικού που προέρχεται από εξωτερικές πηγές. Για την επίτευξη της μέγιστης δυνατής επαναχρησιμοποίησης του υλικού αυτού, ορίζονται τέσσερις βασικοί τύποι αντικειμένων που αντιστοιχούν σε μια εφαρμοστή προσέγγιση βαθμιαίας σύνθεσης αντικειμένων αυξανόμενης εκπαιδευτικής αξίας:

- Ψηφιακά Αντικείμενα (Digital Objects) τα οποία είναι αντικείμενα που προέρχονται από εξωτερικές ψηφιακές βιβλιοθήκες ή τμήματα αυτών εμπλουτισμένα με κατάλληλα μεταδεδομένα και σημασιολογικές περιγραφές.

- Εκπαιδευτικά Αντικείμενα (Learning Objects) τα οποία είναι συλλογές Ψηφιακών Αντικειμένων που μπορούν να υποστηρίζουν έναν ορισμένο εκπαιδευτικό στόχο και συνοδεύονται από κατάλληλα εκπαιδευτικά μεταδεδομένα.

- Αντικείμενα Αποτίμησης (Assessment Objects) τα οποία μπορεί να είναι ερωτηματολόγια ή μεμονωμένες ερωτήσεις (οι οποίες συνδυάζονται σε ερωτηματολόγια) με σκοπό την αποτίμηση των γνώσεων των εκπαιδευόμενων.
• Αντικείμενα Μαθημάτων (Courseware Objects) τα οποία είναι εισαρχίες από Εκπαιδευτικά Αντικείμενα και Αντικείμενα Αποτίμησης και συνιστούν εκπαιδευτικές εμπειρίες που παρέχονται προς τους εκπαιδευόμενους προκειμένου να ικανοποιηθούν οι εκπαιδευτικές τους ανάγκες.

Ο σκοπός αυτής της προσέγγισης είναι διπλός: Αριστείς διευκολύνει την επαναγραφαλογοποίηση αντικειμένων κατώτερου επιπέδου σε αντικείμενα ανώτερου επιπέδου και ελαχιστοποιεί το κόστος ανάπτυξης εκπαιδευτικού υλικού. Αφετέρου, υποστηρίζει αποτελεσματικά τη σταδιακή δημιουργία εκπαιδευτικών πόρων ξεκινώντας από υποκτία αντικειμένα πολυμέσων που βρίσκονται σε εξωτερικές πηγές ενώ παράλληλα μπορεί να υποστηρίζει τη διανομή αυτού του υλικού χρησιμοποιώντας διαφορετικά κανάλια διανομής.

Το λογισμικό που σχεδιάστηκε και υλοποιήθηκε στην παρούσα εργασία χρησιμοποιείται στο έργο LOGOS και ειδικότερα υποστηρίζει την ενοποιημένη διαχείριση των Εκπαιδευτικών Αντικειμένων, των Αντικειμένων Αποτίμησης και των Αντικειμένων Μαθημάτων με τη μορφή των αντίστοιχων αποθηκών υλικού οι οποίες δίνουν τη δυνατότητα στα υπόλοιπα τμήματα της αρχιτεκτονικής του LOGOS να αποθηκεύουν, να ανακτούν και να αναζητούν τα αντίστοιχα αντικείμενα.

Οι αποθήκες υλικού που σχεδιάστηκαν και υλοποιήθηκαν στα πλαίσια της παρούσας διπλωματικής εργασίας ακολουθούν εναλλάξα προδιαγραφές ενώ παράλληλα διατηρούν την αυτόνομιά τους και επομένως μπορούν να χρησιμοποιηθούν και σε άλλα συστήματα ηλεκτρονικής μάθησης τα οποία ακολουθούν τα πρότυπα που έχουν υιοθετηθεί. Ηδη η αποθήκη Αντικειμένων Αποτίμησης έχει ενταχθεί στο σχεδιασμό του συστήματος υποστήριξης διασφάλισης ποιότητας το οποίο θα αναπτυχθεί στα πλαίσια του έργου iQTool. Το έργο iQTool μελετά τις υποτάμενες προσεγγίσεις και μοντέλα για τη διασφάλιση ποιότητας στο υλικό που παρέχεται από συστήματα ηλεκτρονικής μάθησης και συκοτός το είναι αναπτυξία έναν ανοικτό σύστημα διασφάλισης ποιότητας σε ηλεκτρονική μάθησης το οποίο θα μπορεί να ενσωματωθεί σε συστήματα τα οποία ακολουθούν τις αρχές του ανοικτού λογισμικού. Βασικο τμήμα του συστήματος αυτού είναι η αποθήκη Αντικειμένων Αποτίμησης πάνω από την οποία θα αναπτυχθούν μηχανισμοί στατιστικής επεξεργασίας για ανακήρυξη φιλτράρισμα υπογράφεις που καταγράφονται από αξιολογητές του εκπαιδευτικού υλικού οι οποίες, μετά από κατάλληλη επεξεργασία, θα οδηγούν σε κατάλληλη αναθεώρηση του υλικού και των συναφών εκπαιδευτικών υπηρεσιών προκειμένου να διασφαλιστεί η ποιότητά τους. Η αποθήκη αυτή θα είναι η αποθήκη Αντικειμένων Αποτίμησης που αναπτύχθηκε στην παρούσα εργασία. Η
οι αποθήκες αυτή ήδη επεκτείνεται με αποθήκη των απαντήσεων των χρηστών σε ερωτήσεις και ερωτηματολογία, μηχανισμούς στατιστικής επεξεργασίας των απαντήσεων καθώς και με συστήματα διεπαφή (user interfaces) για την κατασκευή των Αντικειμένων Αποτίμησης στα πλαίσια διπλωματικής εργασίας που βρίσκεται σε εξέλιξη.

1.5 Δομή του κειμένου

Στο κεφάλαιο που ακολουθεί θα κάνουμε μια ανασκόπηση των κυριότερων τεχνικών προτύπων και τεχνολογιών που χρησιμοποιήθηκαν για την υλοποίηση των αποθηκών υλικού και την απομακρυσμένη διαχείρισή τους μέσω υπηρεσιών διαδικτύου. Επίσης θα γίνει αναλυτική περιγραφή της πλατφόρμας Eclipse πάνω στην οποία αναπτύχθηκε το γραφικό εργαλείο Query Editor, μεσω του οποίου συντάσσουμε, επεξεργαζόμαστε, αποθημεύουμε και εκτελούμε φίλτρα ασαφούς και δίτιμης λογικής τα οποία χρησιμοποιούμε για την αναζήτηση αντικειμένων στις αποθήκες υλικού.

Στη συνέχεια στο τρίτο κεφάλαιο θα περιγράψουμε την αρχιτεκτονική, τα αρχεία και τις αποθήκες υλικού που αναπτύχθηκαν στα πλαίσια του LOGOS, το είδος των αντικειμένων που διαχειρίζονται οι αποθήκες υλικού που υλοποιήσαμε στα πλαίσια της διπλωματικής και τον τρόπο με τον οποίο χρησιμοποιείται το πρότυπο METS προκειμένου να περιγράψουμε αυτά τα αντικείμενα.

Κατόπιν, στο τέταρτο κεφάλαιο θα περιγράψουμε την αρχιτεκτονική των αποθηκών υλικού που υλοποιήσαμε στα πλαίσια της διπλωματικής εργασίας προκειμένου να διαχειριστούμε τα Ευπαιδευτικά Αντικείμενα, τα Αντικείμενα Μαθημάτων και τα Αντικείμενα Αποτίμησης. Παράλληλα, θα δοθεί μια πρώτη εικόνα των υπηρεσιών ιστού που υλοποιήσαμε στη διπλωματική και τον τρόπο με τον οποίο χρησιμοποιούμε το πρότυπο METS προκειμένου να περιγράψουμε τα Αντικείμενα Εκπαιδευτικά και Αντικείμενα Μαθημάτων.

Στο πέμπτο κεφάλαιο θα πραγματοποιηθεί μια αναλυτική παρουσίαση των φίλτρων αναζήτησης. Στο κεφάλαιο αυτό θα περιγράψουμε αναλυτικά την δομή, σημασιολογία και αναγνώριση των φίλτρων αναζήτησης δίτιμης και ασαφούς λογικής. Θα δοθούν οι λεπτομέρειες για τον τρόπο με τον οποίο δημιουργούνται τα φίλτρα, καθώς επίσης και για τον τρόπο με τον οποίο χρησιμοποιούνται για την ανάκτηση αντικειμένων από τις αποθήκες υλικού.
Στο έκτο κεφάλαιο θα περιγράψουμε τις προδιαγραφές και λεπτομέρειες υλοποίησης των υπηρεσιών διαδικτύου με τις οποίες επιτυγχάνουμε πρόσβαση για εισαγωγή, ανάκτηση και επεξεργασία των αντικειμένων ή τμημάτων των αντικειμένων που βρίσκονται στις αποθήκες υλικού.

Το έβδομο κεφάλαιο αποτελείται από έναν οδηγό περιγραφής και χρήσης του γραφικού εργαλείου Query Editor, μέσω του οποίου δημιουργούμε, επεξεργαζόμαστε, αποθηκεύουμε και εκτελούμε φίλτρα ασαφούς και δίτιμης λογικής.

Τέλος στο έγχρωμο κεφάλαιο γίνεται μια ανασκόπηση της εργασίας, αναλύεται η συνεισφορά της στα ερευνητικά έργα που χρησιμοποιήθηκε ή χρησιμοποιεί καθώς και η γενικότερη συνεισφορά της. Στο τέλος του κεφαλαίου αναφέρονται οι πιθανές μελλοντικές επεκτάσεις που μπορούν να γίνουν στον συντάκτη.
Κεφάλαιο 2

Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

2.1 Εισαγωγή

Προκειμένου να φέρουμε σε πέρας την παρούσα διπλωματική εργασία χρησιμοποιήσαμε μια σειρά κατάλληλων τεχνικών προτύπων, εργαλείων και τεχνολογιών. Τα μεν τεχνικά πρότυπα είναι απαραίτητα προκειμένου να επιτύχουμε την επιθυμητή διαλειτουργική των υλοποιηθέντων αποθηκών και την ανεξαρτησία τους ώστε να είναι επαναχειρουργοποιήσιμες σε διαφορετικά συστήματα. Τα δε εργαλεία και οι τεχνολογίες που χρησιμοποιήθηκαν έδωσαν τη δυνατότητα αξιοποίησης των παραπάνω τεχνικών προτύπων και την αποτελεσματική ανάπτυξη των υλοποιηθέντων τμημάτων λογισμικού.

Στο κεφάλαιο αυτό θα αναφέρουμε τις κυριότερες τεχνικές προδιαγραφές, πρότυπα και εργαλεία που χρησιμοποιήθηκαν στην εργασία αυτή. Στην παράγραφο 2.2.1 θα παρουσιάσουμε τα κυριότερα χαρακτηριστικά της XML και XML Schema τις οποίες χρησιμοποιούμε για να περιγράψουμε τα έγγραφα που διαχειρίζονται οι αποθήκες υλικού. Στην παράγραφο 2.2.2 παρουσιάζουμε στοιχεία που αφορούν στην XQuery γλώσσα αναζήτησης με την οποία προσπελαύνουμε και ανακτούμε τα αντικείμενα ή τμήματα των αντικειμένων που έχουμε αποθηκεύσει στις αποθήκες υλικού. Στην παράγραφο 2.2.3 αναφέρομαστε στο πρότυπο METS (Metadata Encoding and Transmission Standard) το οποίο δημιουργήθηκε για την κωδικοποίηση περιγραφικών, διαχειριστικών και δομικών μεταδεδομένων που σχετίζονται και παριστάνουν τα Εκπαιδευτικά Αντικείμενα, Αντικείμενα Μαθημάτων και Αντικείμενα Αποτίμησης που διαχειρίζονται οι αποθήκες υλικού. Ακολουθεί η ενότητα 2.2.4 στην οποία κάνονται αναφορές στο LOM (Learning Object Metadata) πρότυπο, το οποίο είναι μοντέλο εκπαιδευτικών μεταδεδομένων, συνήθως κωδικοποιημένο με XML, που χρησιμοποιείται για να περιγράψει ένα Εκπαιδευτικό Αντικείμενο και λοιπές
ϕημισικές πηγές γνώσεων που χρησιμοποιούνται για την υποστήριξη μάθησης. Στην ενότητα 2.2.5 παρουσιάζεται το IMS question and test interoperability (IMS QTI) πρότυπο το οποίο αποσκοπεί στην περιγραφή εκπαιδευτικού υλικού που χρησιμοποιείται για την αξιολόγηση γνώσεων και διεξαγωγή ερευνών σε πολλές εκπαιδευτικές και μη περιπτώσεις. Στην ενότητα 2.2.6 παρουσιάζομε το IMS DRI πρότυπο το οποίο αποτέλεσε και τη βάση για το σχεδιασμό των υπηρεσιών ιστού για την διαχείριση των αποθηκών υλικού.

Άκολουθοι περιγραφές των τεχνολογιών που χρησιμοποιήθηκαν στα πλαίσια της διπλωματικής εργασίας, όπως η πλατφόρμα Eclipse, η οποία παρουσιάζεται στην ενότητα 2.3.1 και στην οποία αναπτύχθηκε το λογισμικό που επιτυγχάνει τους στόχους της εργασίας.

Στην ενότητα 2.2.1 XML (extensible markup language)
Η XML[6][7] είναι γλώσσα που χρησιμοποιείται για την δημιουργία δομημένων εγγράφων και δεδομένων. Η XML θεωρείται επεκτάσιμη (extensible) επειδή επιτρέπει στους χρήστες να αντικατοπτρίζουν το δικό τους σχήμα, σε αντίθεση με την HTML η οποία είναι προκαθορισμένη γλώσσα σήμανσης (markup language). Η XML αποτελεί μια μετα-γλώσσα επιτρέποντας, μέσω της δημιουργίας νέων ετικετών (tags), τον σχεδιασμό και την δημιουργία καινούργιων γλώσσων, εφαρμογών – παράγωγων της XML. Οι προγραμματιστές μπορούν, ορίζοντας ένα δικό τους λεξιλόγιο, να προσθέτουν στη γλώσσα σήμανσης προσαρμοσμένη στις εξειδικευμένες ανάγκες και απαιτήσεις της εκάστοτε εφαρμογής ή του συγκεκριμένου πεδίου εφαρμογής. Εξαιτίας της μεγάλης ευελιξίας της, η XML είναι ο πλέον διαδεδομένος τρόπος για την διανομή και παρουσίαση δομημένων και ημιδομημένων δεδομένων και υλικού σε πολλές εκπαιδευτικές και μη περιπτώσεις. Η XML είναι συμβατή με την πλειοψηφία των πρωτοκόλλων μετάδοσης του διαδικτύου και επιπλέον είναι ειδικευμένη για την εξέλιξη εφαρμογών για την διαχείριση δεδομένων. Η XML είναι πολύ φιλική και υποστηρίζει την διεξαγωγή μηχανών και συστημάτων. Η XML είναι ένας δεδομένος που χρησιμοποιείται για τη σύνδεση ιστοτόπων. Η XML είναι μια μετα-γλώσσα που χρησιμοποιείται για την εξέλιξη εφαρμογών και συστημάτων.

Η XML βασίζεται σε μοντέλο δεδομένων το οποίο αποτελείται από δεδομένα και το σχήμα (schema) το οποίο το περιγράφει.
2.2.1.1 XML στοιχεία (elements), γνωρίσματα (attributes), δεδομένα (data)

Τα XML έγγραφα περιέχουν δομημένο κείμενο. Οι συντάκτες αναπαριστούν την δομή τοποθετώντας ετικέτες (tags) γύρω από τα δεδομένα. Οι δομικοί χαρακτήρες αρχής, τέλους

Εικόνα 2-1: παράδειγμα XML εγγράφου[7]

(structural delimiters) είναι ετικέτες, οι οποίες ξεκινούν και τελειώνουν με γωνιακές αρχές/τέλη. Το κέιμενο μεταξύ των γωνιακών αγκύλων περιέχει πληροφορία σχετικά με τα XML στοιχεία (element) -kat' ελάχιστον ονοματίζει το στοιχείο. Ένα στοιχείο (element) αποτελείται από ετικέτα (tag) ανοίγματος, περιεχόμενα, και ετικέτα κλεισίματος. Οι ετικέτες κλεισίματος έχουν το ίδιο όνομα με τις ετικέτες ανοίγματος όμως ξεκινούν με </. Τα περιεχόμενα ενός στοιχείου (elements) μπορεί να είναι κείμενο, άλλα στοιχεία ή συνδυασμός των δύο. Ένα XML έγγραφο πρέπει να έχει μοναδικό στοιχείο το οποίο περιλαμβάνει όλα τα υπόλοιπα στοιχεία (root element). Η XML είναι case and space sensitive και τα στοιχεία πρέπει πάντα να έχουν ετικέτα κλεισίματος, ενώ απαγορεύεται η ύπαρξη επικαλυπτόμενων στοιχείων. Ένα στοιχείο μπορεί να είναι κενό και να μην έχει περιεχόμενα. Τα XML σχόλια εμφανίζονται μεταξύ των χαρακτήρων <!----. Οι ετικέτες μπορεί να περιέχουν πρόσθετη πληροφορία η οποία καλείται γνώρισμα (attribute). Τα γνωρίσματα τοποθετούνται στην ετικέτα ανοίγματος ενός στοιχείου(element) και γράφονται με την μορφή όνομα=""τιμή". Δεν υπάρχει κενό μεταξύ = και όνοματος και η τιμή ενός γνωρίσματος πρέπει να περιβάλλεται από χαρακτήρες ‘’ ή ‘. Τα γνωρίσματα μέσα σε ένα στοιχείο πρέπει να έχουν μοναδικά όνομα.
Έχουμε παραθέσει δείγμα XML εγγράφου με πληροφορίες σχετικά με ένα αρχείο mp3 στην εικόνα 2-1. Το στοιχείο <Song> παρέχεται σε ένα στοιχείο: <Title>, <Artist>, <Album>, <Duration> και <Encoding>. Το στοιχείο <Title> εμφανίζει το κείμενο “A million miles away” δίδοντας πληροφορίες σχετικά με τον τίτλο του τραγουδιού. Το στοιχείο <Artist> εμφανίζει το κείμενο “Rory Gallagher” δίδοντας πληροφορίες σχετικά με το όνομα του καλλιτέχνη. Το <Album> περιέχει το κείμενο “Tattoo” πληροφορώντας μια για το όνομα του album. Το στοιχείο <Duration> περιλαμβάνει τρία γνώρισμα (hours, minutes, seconds) με τις συστατικές που υποδεικνύουν την διάρκεια του τραγουδιού. Τέλος το πέμπτο στοιχείο <Encoding> περιέχει κείμενο “Mpeg1-Layer3” με πληροφορίες σχετικά με την κωδικοποίηση του αρχείου.

Τέλος ένας μηχανισμός που συμβάλλει στην επεκτασιμότητα της XML και βοηθεί στον προσδιορισμό των στοιχείων ενός εγγράφου XML είναι οι χώροι ονοματοδοσίας (XML Namespaces). Προσδιορίζοντας τους χώρους ονοματοδοσίας που χρησιμοποιεί ένα εγγράφο υπογράφεται η σύγχρονη από συνώνυμα στοιχεία. Παράλληλα δίνεται η δυνατότητα στον καθένα να επεκτείνει την γλώσσα καθορίζοντας δικές του ετικέτες, υπάρχοντας τις κάτω από ένα κανονικό χώρο ονοματοδοσίας, χωρίς να υπάρχει πρόβλημα σύγκρουσης με ονόματα ετικετών που ήδη χρησιμοποιούνται. Για την δήλωση των χώρων ονοματοδοσίας χρησιμοποιούνται τα URIs (Universal Resource Identifier), που προσδιορίζουν μοναδικά ένα χώρο στον παγκόσμιο ιστό.

2.2.1.2 XML Schema

Όπως έχει ήδη αναφερθεί, οι τεχνικές προδιαγραφής της XML προσδιορίζουν απλώς τους κανόνες σύνταξης οι οποίοι πρέπει να διέπουν τα εγγράφα XML. Δεν καθορίζουν όμως το λεξιλόγιο και την ονοματολογία των στοιχείων και των γνωρισμάτων που θα περιέχονται ούτε τις σχέσεις μεταξύ τους. Αυτά αναλαμβάνει να καθορίσει ο συντάκτης κατά τον προσδιορισμό της δομής της γλώσσας XML που θα χρησιμοποιηθεί, ηχώνοντας ένα σύνολο από κανόνες στοιχείου που πρέπει να υπάκουουν τα XML έγγραφα προσκειμένου να θεωρηθούν έγχρωμα για την εικάστητα εφαρμογή. Για την επίτευξη του σκοπού αυτού, στα πλαίσια της διπλωματικής εργασίας, χρησιμοποιήθηκε η XML Schema.

Ένα XML Schema[7], ακολουθεί την σύνταξη και δομή της XML. Προσδιορίζει πλήρως τα στοιχεία (elements) που μπορεί να περιέχει ένα XML έγγραφο, την σειρά που θα εμφανίζονται, κανόνες στους οποίους θα πρέπει να συμμορφώνεται το παρεχόμενο των
Κεφάλαιο 2 – Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

στοιχείων καθώς και κάποιους πιο σύνθετους περιορισμούς όπως το πλήθος των στοιχείων (cardinality constraints).

Το XML Schema για το XML έγγραφο της εικόνας 2-1 θα μπορούσε να είναι αυτό που δίνεται παρακάτω:

```xml
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <xsd:element name="song">
    <xsd:complexType>
      <xsd:sequence>
        <xsd:element name="Title" type="xsd:string" minOccurs="1" maxOccurs="1"/>
        <xsd:element name="Artist" type="xsd:string" minOccurs="1" maxOccurs="1"/>
        <xsd:element name="Album" type="xsd:string" minOccurs="1" maxOccurs="1"/>
        <xsd:element name="Duration" type="xsd:decimal" minOccurs="1" maxOccurs="1"/>
        <xsd:complexType>
          <xsd:attribute name="hours" type="xsd:string" use="required"/>
          <xsd:attribute name="minutes" type="xsd:string" use="required"/>
          <xsd:attribute name="seconds" type="xsd:string" use="required"/>
        </xsd:complexType>
      </xsd:sequence>
      <xsd:element name="Encoding" type="xsd:string" minOccurs="1" maxOccurs="1"/>
    </xsd:complexType>
  </xsd:element>
</xsd:schema>
```

Εικόνα 2-2: XML Scheme[7]

2.2.1.3 Well-Formedness και Validity

Η XML αναγνωρίζει δύο κατηγορίες εγγράφων: Τα σωστά μορφοποιημένα (well-formed) και τα έγγραφα (valid).

Για να μπορεί να χαρακτηριστεί ένα XML έγγραφο ως σωστά μορφοποιημένο πρέπει να ακολουθεί κατηγορίας συντακτικούς κανόνες της XML τους οποίους συνοψίζουμε στα εξής:

- Μοναδικό ρίζικο στοιχείο
- Συμμετέχει Πεζών – Κεφαλαίων
- Συμμετέχει ετικετών Ανοίγματος – Κλεισίματος
- Σωστά εμφωλευμένες ετικέτες
- Οι τιμές των ιδιοτήτων να εσωκλείονται σε εισαγωγικά
- Όχι γνωρίσματα με το ίδιο όνομα στο ίδιο στοιχείο

Για να χαρακτηριστεί ένα έγγραφο έγγραφο θα πρέπει να υπεικονίζει στους κανόνες που έχουν δοθεί από το XML Schema στο οποίο υπόκειται και επιπλέον θα πρέπει να είναι και σωστά μορφοποιημένο.
2.2.2 XQuery

Η XQuery[5][4] είναι γλώσσα επερωτήσεων σε βάσεις XML δεδομένων και σε XML έγγραφα η οποία σχεδιάστηκε για την ανάκτηση πληροφοριών από XML συλλογές δεδομένων. Σημασιολογικά παρουσιάζει ομοιότητες με την SQL.

Χαρακτηριστικά

Η XQuery παρέχει την δυνατότητα ανάκτησης και διαχείρισης δεδομένων που περιέχονται σε XML έγγραφα ή σε οποιαδήποτε πηγή μπορεί να αντιμετωπιστεί ως XML.

Η XQuery είναι μια λειτουργική γλώσσα στην οποία κάθε ερώτημα είναι μια έκφραση. Οι εκφράσεις XQuery εμπίπτουν σε επτά ευρείς τύπους: εκφράσεις διαδρομής (path expressions), κατασκευαστές στοιχείων (element constructor), εκφράσεις FLWR (ο όρος προορίζεται από τα πρώτα γράμματα των συντακτικών μονάδων που χρησιμοποιούνται στις εκφράσεις FLWR), εκφράσεις που περιέχουν χειριστές και συναρτήσεις, εκφράσεις συνθήκης (conditional expressions), ποσοτικές εκφράσεις ή εκφράσεις που δοκιμάζουν ή μετατρέπουν τύπους δεδομένων.

Η XQuery είναι ένα περίπλοκο σύστημα τύπων βασισμένο στους τύπους δεδομένων των XML Schemas και υποστηρίζει την διαχείριση των κόμβων του εγγράφου.

Θα παραθέσουμε XML έγγραφο (books.xml) που θα αποτελέσει τη βάση στην οποία θα εφαρμοστούν κάποια XQuery ερωτήματα:

```
<bib>
  <book year="1994">
    <title>TCP/IP Illustrated</title>
    <author>last=Stevens,first=W.</author>
    <publisher>Addison-Wesley</publisher>
    <price>65.95</price>
  </book>
  <book year="1997">
    <title>Advanced Programming in the UNIX Environment</title>
    <author>last=Stevens,first=W.</author>
    <publisher>Addison-Wesley</publisher>
    <price>65.95</price>
  </book>
  <book year="2000">
    <title>Data on the Web</title>
    <author>last=Bouwman,first=Peter</author>
    <publisher>Morgan Kaufmann Publishers</publisher>
    <price>65.95</price>
  </book>
</bib>
```

2.2.2.1 Εντοπισμός κόμβων με χρήση της XPath

Η XQuery, διαχειρίζεται τα XML έγγραφα ως δέντρα που αποτελούνται από κόμβους. Τα είδη των κόμβων που προκύπτουν είναι τα εξής: έγγραφο, στοιχείο, κείμενο, γνώρισμα, χώρος ονοματοδοσίας, οδηγίες επεξεργασίας, και σχόλιο. Η σύνταξη των δηλώσεων που χρησιμοποιούνται για τον εντοπισμό των κόμβων (δηλώσεις διαδρομής, path expression) προέρχεται από τη σύνταξη της γλώσσας XPath. Ένα απλό παράδειγμα χρήσης της XQuery για τον εντοπισμό κόμβων είναι το εξής:

doc ("books.xml")/bib/book

2.2.2.2 Δημιουργία Κόμβων

Μέσω της XQuery παρέχεται η δυνατότητα δημιουργίας νέων κόμβων. Συγκεκριμένα, για την δημιουργία των νέων στοιχείων, χρησιμοποιούνται οι αγκύλες οι οποίες περιέχουν δηλώσεις που εκτελούνται για την δημιουργία νέου περιεχομένου. Για παράδειγμα:

```xml
<example>
   <p> Here is a query </p>
   <eg> doc("books.xml")/bib/book[1]/title </eg>
   <p> Here is the result of the above query </p>
   <eg> { doc("books.xml")/bib/book[1]/title } </eg>
</example>
```

Το αποτέλεσμα του παραπάνω επαρκήματος είναι το εξής:

```xml
<example>
   <p> Here is a query </p>
   <eg> doc("books.xml")/bib/book[1]/title </eg>
   <p> Here is the result of the above query </p>
   <eg><title>TCP/IP Illustrated</title></eg>
</example>
```
Κεφάλαιο 2 – Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

Οι δηλώσεις που περιέχονται στις αγκύλες επιτρέπουν την δημιουργία νέων XML τιμών αναδομώντας υπάρχοντες XML τιμές. Στο προηγούμενο παράδειγμα πήραμε τον τίτλο του πρώτου βιβλίου.

Το επόμενο παράδειγμα δημιουργεί ένα νέο XML έγγραφο το οποίο περιέχει τους τίτλους των βιβλίων που περιγράφονται από το έγγραφο της εικόνας 2-3:

```
<titles count="\{ count(doc("books.xml")//title) \}">
{

doc("books.xml")//title
}
</titles>
```

Το αποτέλεσμα αυτού του παραπάνω επερωτήματος είναι το εξής:

```
<titles count = "3">
    <title>TCP/IP Illustrated</title>
    <title>Advanced Programming in the Unix Environment</title>
    <title>Data on the web</title>
</titles>
```

2.2.2.3 Συνδυασμός και αναδόμηση κόμβων

Οι δηλώσεις FLWR, είναι οι πιο συνηθισμένες και πιο ισχυρές δηλώσεις της γλώσσας XQuery. Οι δηλώσεις αυτές είναι παρόμοιες με τις δηλώσεις SELECT – FROM – WHERE που χρησιμοποιούνται στην γλώσσα SQL για την διαχείριση των βάσεων δεδομένων. Αντίθετα, όμως με την SQL, όπου οι δηλώσεις καθορίζονται με βάση τους πίνακες μιας βάσης δεδομένων, τις εγγραφές και τα χαρακτηριστικά τους, οι FLWR δηλώσεις δεσμεύουν μεταβλητές με τιμές μέσω των for και των let συντακτικών μονάδων (clause), και χρησιμοποιούν αυτές τις αντιστοιχίες για την δημιουργία νέων αποτελεσμάτων. Ένας
Συνδυασμός τέτοιων αποτελεσμάτων ονομάζεται συστοιχία (tuple). Μια απλή FLWR δήλωση που επιστρέφει τον τίτλο και την τιμή κάθε βιβλίου που εκδόθηκε τη χρονιά 2000 είναι η εξής:

```
for $b in doc("books.xml")/bib/book
where $b/@year = "2000"
return $b/title
```

Η δήλωση αυτή δεσμεύει την μεταβλητή $b σε ένα βιβλίο κάθε φορά, δημιουργώντας μια σειρά από συστοιχίες. Κάθε συστοιχία περιέχει μια δεσμεύσεις κατά την οποία η μεταβλητή $b αντιστοιχεί σε ένα συγκεκριμένο βιβλίο. Η συντακτική μονάδα where ελέγχει κάθε συστοιχία για το αν ισχύει η ισότητα $b/@year = "2000" (με @ κάνουμε αναφορά στα γνωρίσματα (attributes) που περιέχει ένα στοιχείο), ενώ η συντακτική μονάδα return υπολογίζεται για κάθε συστοιχία που ικανοποιεί τη συνθήκη που εκφράστηκε με το where clause. Στην περίπτωσή μας το αποτέλεσμα του ερώτήματος είναι :

```
<title> Data on the web </title>
```

Τα αρχικά FLWR προέρχονται από τα πρώτα γράμματα των συντακτικών μονάδων που χρησιμοποιούνται στις εκφράσεις FLWR και είναι οι εξής:

- for: δεσμεύει μια ή περισσότερες μεταβλητές σε σειρά από συστοιχίες.
- let: δεσμεύουν μεταβλητές σε ολόκληρο το αποτέλεσμα μιας δήλωσης, είτε προσθέτοντας αυτές τις δεσμεύσεις στις συστοιχίες που δημιουργούνται από τη μονάδα for, είτε δημιουργώντας μια απλή συστοιχία που να περιέχει αυτές τις δεσμεύσεις σε περίπτωση που δεν έχει οριστεί μια for συντακτική μονάδα.
- where: φιλτράρει συστοιχίες, διατηρώντας μόνο αυτές που ικανοποιούν μια συνθήκη
- order by: τάξινομε τις συστοιχίες
- return: δημιουργούν αποτελέσματα μιας FLWR δήλωσης για μια δομή συστοιχία

Μια FLWR δήλωση ξεκινάει με μια ή περισσότερες for, let μονάδες τοποθετημένες σε οποιαδήποτε σειρά, ακολουθούμενες από τις συντακτικές μονάδες where, order by και return.
Η χρήση των where και order by είναι προαιρετική ενώ η χρήση της return είναι υποχρεωτική.

Οι συντακτικές μονάδες for και let

Οι FLWR δηλώσεις καθορίζονται από τις συστοιχίες οι οποίες δημιουργούνται μέσω των μονάδων for και let, συνεπώς κάθε FLWR δήλωση πρέπει να αποτελείται από τουλάχιστον μια for ή let μονάδα. Τα παραδείγματα που ακολουθούν βοηθούν ώστε να γίνει κατανοητός ο τρόπος με τον οποίο δημιουργούνται οι συστοιχίες στις FLWR δηλώσεις.

Στο επόμενο παράδειγμα ορίζεται ένα επερώτημα που δημιουργεί (μέσω της return) ένα στοιχείο που ονομάζεται <tuple> προκειμένου να εμφανίσει τις συστοιχίες που δημιουργούνται από ένα τέτοιο επερώτημα:

```
for $i in (1,2,3)
return
 <tuple><i>{ $i }</i></tuple>
```

Στο παράδειγμα αυτό, δεσμεύεται η μεταβλητή $i στη δήλωση (1,2,3), που δημιουργεί μια αλληλουχία ακεραίων. Η XQuery παρέχει μια γενική σύνταξη με αποτέλεσμα οι μονάδες for και let να δεσμεύουν οποιαδήποτε XQuery δήλωση. Ακολουθεί το αποτέλεσμα του παραπάνω ερωτήματος, που δείχνει τον τρόπο με τον οποίο η μεταβλητή $i δεσμεύεται σε κάθε συστοιχία:

```
<tuple><i>1</i></tuple>
<tuple><i>2</i></tuple>
<tuple><i>3</i></tuple>
```

Η συντακτική μονάδα let δεσμεύει μια μεταβλητή σε ολόκληρο το αποτέλεσμα μιας δήλωσης. Αν δεν έχουν οριστεί for μονάδες, τότε δημιουργείται μια απλή συστοιχία, που περιέχει τις δεσμεύσεις μιας μεταβλητής όπως ορίστηκε μέσω της let μονάδας. Το ακόλουθο επερώτημα είναι ίδιο με το προηγούμενο, με τη διαφορά ότι χρησιμοποιείται η συντακτική μονάδα let:

```
let $i := (1,2,3)
return
 <tuple><i>{ $i }</i></tuple>
```
Λαμβάνεται το αποτέλεσμα του παραπάνω επερώτηματος κατά το οποίο η μεταβλητή i δεσμεύεται σε ολόκληρη την αλληλουχία των ακεραίων:

```
<tuple><i>1 2 3</i></tuple>
```

Στο επερώτημα που ακολουθεί οι δηλώσεις που δεσμεύτηκαν μέσω της let μονάδας προστίθενται στις συστοιχίες που δημιουργήθηκαν μέσω της μονάδας for.

```
for $i in (1, 2, 3)
let $j := (1, 2, 3)
return
  <tuple><i>{ $i }</i><j>{$j}</j></tuple>
```

Το αποτέλεσμα του παραπάνω επερώτηματος είναι το εξής:

```
<tuple><i>1</i><j>1 2 3</j></tuple>
<tuple><i>2</i><j>1 2 3</j></tuple>
<tuple><i>3</i><j>1 2 3</j></tuple>
```

Η συντακτική μονάδα where

Η συντακτική μονάδα where επιλέγει τις συστοιχίες αυτές που δεν ικανοποιούν συγκεκριμένες συνθήκες. Η μονάδα return εκτελείται μόνο για τις συστοιχίες που επιστρέφονται από τη μονάδα where. Το ακόλουθο επερώτημα επιστρέφει τα βιβλία των οποίων η τιμή ξεπερνάει τα 50 €:

```
for $b in doc(“books.xml”)/bib/book
  where $b/price > 50.00
  return $b/title
```

Το αποτέλεσμα του επερώτηματος αυτού είναι:
Η μονάδα for μπορεί να παρέχει οποιαδήποτε δήλωση το αποτέλεσμα της οποίας, είναι μια Boolean τιμή. Το ακόλουθο ερώτημα επιστρέφει τον τίτλο των βιβλίων των οποίων οι συγγραφείς είναι παραπάνω από δύο:

```xml
for $b in doc(“books.xml”)//book
let $c := $b//author
where count ($c) >2
return $b/title
```

Το αποτέλεσμα της παραπάνω επερώτησης είναι το εξής:

```
Data on the web</title>
```

Η συντακτική μονάδα order by

Η συντακτική μονάδα order by, ταξινομεί τις συστοιχίες πριν την εκτέλεση της μονάδας return προκειμένου να αλλάξει η σειρά των αποτελεσμάτων. Για παράδειγμα το ακόλουθο ερώτημα εφαρμόζει τους τίτλους των βιβλίων με αλφαβητική σειρά:

```xml
for $t in doc(“books.xml”)//title
order by $t
return $t
```

Η μονάδα for παράγει μια αλληλουχία από συστοιχίες, όπου κάθε μια περιέχει τον κόμβο title. Η μονάδα order by ταξινομεί αυτές τις συστοιχίες με βάση την τιμή που περιέχει το
κεφάλαιο 2 – σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

στοιχείο 1<title> σε κάθε συστοιχία, ενώ η μονάδα return επιστρέφει τα στοιχεία </title> με την ιδια σειρά στην οποία βρισκόνται ταξινομημένες οι συστοιχίες.

Το αποτέλεσμα αυτού του επερωτήματος είναι το εξής:

<title>Advanced Programming in the Unix Environment</title>
<title>Data on the web</title>
<title>TCP/IP Illustrated</title>

Η συντακτική μονάδα return

Όμοια με τις συντακτικές μονάδες for και let, η μονάδα return επιτρέπει τη δέσμευση μεταβλητών σε οποιαδήποτε δήλωση και με την μονάδα where η οποία μπορεί να περιέχει οποιαδήποτε Boolean δήλωση, η μονάδα return μπορεί να περιέχει οποιαδήποτε δήλωση. Έχουν ήδη παρατεθεί αρκετά παραδείγματα σχετικά με τον τρόπο χρησιμοποίησης της μονάδας return.

2.2.2.4 Δήλωση Συναρτήσεων

Η XQuery επιτρέπει και την δήλωση συναρτήσεων. Για την εκτέλεση συνάρτησης η έκφραση στο σώμα της συνάρτησης υπολογίζεται και η τιμή επιστρέφεται.

Παράδειγμα δήλωσης συνάρτησης

declare function local:doubler($x) { $x * 2 }

2.2.3 METS

Το Mets είναι XML Schema που σχεδιάστηκε για να εξυπηρετήσει τους παρακάτω σκοπούς:

- Δημιουργία XML εγγράφων τα οποία εικράζουν την ειρακογια δομή των αντικειμένων ψηφιακών βιβλιοθηκών.
• Αναφορά συσχετισμένων μεταδεδομένων. Εξαίτια αυτού το METS μπορεί να χρησιμοποιηθεί ως εργαλείο μοντελοποίησης αντικειμένων του πραγματικού κόσμου.

2.2.3.1 Δομικά στοιχεία ενός METS εγγράφου

Τα δομικά στοιχεία ενός METS εγγράφου είναι τα εξής:

• METS header: περιέχει μεταδεδομένα που περιγράφονται στο συγκεκριμένο METS έγγραφο, περιλαμβάνοντας πληροφορίες όπως για παράδειγμα ποιος ο δημιουργός, ο εκδότης κ.τ.λ.

• Descriptive Metadata: Το τμήμα αυτό χρησιμοποιείται για εύρεση και αναγνώριση. Περιλαμβάνει πληροφορίες σχετικές με τα διανοητικά περιεχόμενα του αντικειμένου, είναι παρόμοια με το μεγαλύτερο μέρος του περιεχομένου μιας σταντάρ εγγραφής καταλόγου και επιτρέπει στο χρήστη μιας ψηφιακής βιβλιοθήκης να βρίσκει ένα αντικείμενο και να εκτιμά τη σχετικότητά του.

• Administrative Metadata: Παρέχει πληροφορίες που αφορούν στον τρόπο με τον οποίο τα αρχεία δημιουργήθηκαν και αποθηκεύτηκαν, πληροφορίες σχετικές με διακιωματα πνευματικής ιδιοκτησίας, πληροφορίες που αφορούν στο αρχικό αντικείμενο πηγής από το οποίο προέρχεται το αντικείμενο της ψηφιακής βιβλιοθήκης, καθώς και πληροφορίες σχετικές με την προέλευση των αρχείων που περιλαμβάνονται στο αντικείμενο ψηφιακής βιβλιοθήκης (σχέσεις αρχετύπου/παραγώγων -master/derivative file relationships- και πληροφορίες μεταφοράς/μετασχηματισμού -migration/transformation information). Ως με την περίπτωση των περιγραφικών μεταδεδομένων, έτσι και τα διαχειριστικά μεταδεδομένα μπορεί να είναι είτε εξωτερικά είτε εσωτερικά του METS εγγράφου.

• File Section: Το τμήμα αυτό του METS εγγράφου, περιλαμβάνει λίστα όλων των αρχείων που έχουν περιγραφεί στο οποίο περιγράφεται ένα Ψηφιακό Αντικείμενο. Συμπεριλαμβάνει κάποια τμήματα του METS εγγράφου, με το οποίο περιγράφεται ένα Ψηφιακό Αντικείμενο, μπορεί να περιγράφονται από αρχεία που βρίσκονται εξωτερικά του METS εγγράφου. Η αναφορά σε αυτά τα αρχεία γίνεται μέσω του τμήματος File Section. Τα <file> στοιχεία μπορεί να ομαδοποιηθούν σε <fileGrp>
κεφάλαιο 2 – σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

στοιχεία, ώστε να παρέχεται υποδιαίρεση των αρχείων με βάση την έκδοση (version) του αντικειμένου.

- **Structural Map**: Αυτό το τμήμα είναι η καρδιά του METS αρχείου. Αναπαριστά την ιεραρχική δομή του αντικειμένου ψηφιακής βιβλιοθήκης και συνδέει τα στοιχεία της δομής με τα περιεχόμενα αρχεία και τα μετάδεδομένα που ανήκουν σε κάθε στοιχείο.

- **Structural Links**: Αυτό το τμήμα επιτρέπει στους δημιουργούς του METS να καταγράψουν την ύπαρξη hyperlinks μεταξύ των κόμβων στην ιεραρχία που αναπαρίσταται στο Structural Map.

- **Behavioral**: Το τμήμα αυτό καταγράφει πληροφορίες σχετικά με μια υπηρεσία (εκτελεστή συμπεριφορά) που σχετίζεται με το αντικείμενο METS. Μια υπηρεσία (για παράδειγμα μια υπηρεσία ιστού) μπορεί να ορίζει μία ή περισσότερες λειτουργίες (μεθόδους, συμπεριφορές) οι οποίες μπορούν να εφαρμοστούν πάνω στο αντικείμενο METS.

2.2.4 LOM

IEEE 1484.12.1 – 2002 πρότυπο για μετάδεδομένα εκπαιδευτικών αντικειμένων (Standard for Learning Object Metadata)

Η ομάδα εργασίας του IEEE που ανέπτυξε το πρότυπο όρισε ως Εκπαιδευτικό Αντικείμενο κάθε οντότητα ψηφιακή ή μη, που θα μπορούσε να συνεισφέρει στην εκπαιδευτική διαδικασία. Το IEEE 1484.12.1 είναι το πρώτο μέρος ενός πολυσύνθετου προτύπου και περιγράφει το LOM μοντέλο δεδομένων. Το μοντέλο αυτό προσδιορίζει ποιες πεδία ενός Εκπαιδευτικού Αντικειμένου πρέπει να περιγραφούν και ποιες λεξιλόγια θα πρέπει να χρησιμοποιηθούν για τον σκοπό αυτό. Επίσης στο IEEE 1484.12.1 ορίζεται και ο τρόπος με τον οποίο το LOM μοντέλο δεδομένων θα βελτιώνεται με προσθήκες ή περιορισμούς. Άλλα τμήματα του
Κεφάλαιο 2 – Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

προτύπου, ασχολούνται με τον ορισμό bindings του LOM μοντέλου, π.χ. πως πρέπει να αναπαριστώνται σε XML και RDF, κάποιες LOM παρεχθές.

Σκοπιμότητες που εξυπηρετεί το LOM:

Μερικοί από τους κύριους στόχους που εξυπηρετεί το LOM είναι:

- Δημιουργία σωστά δομημένων περιγραφών οι οποίες θα διευκολύνουν τον εντοπισμό, ανάκτηση και εκτίμηση των εκπαιδευτικών αντικειμένων από μαθητές, καθηγητές ή αυτοματοποιημένα λογισμικά.

- Μείωση του κόστους που συνεπάγεται η παροχή εκπαιδευτικών υπηρεσιών μέσω του διαμοιρασμού των ιδίων περιγραφών μεταδομένων ανάμεσα σε διαφορετικά συστήματα ανάκτησης Εκπαιδευτικών Αντικειμένων.

- Επεξεργασία των περιγραφών των εκπαιδευτικών πόρων ώστε να εξυπηρετούν εξαιδικευμένες ανάγκες οι οποίες μπορεί να περιλαμβάνουν την επιλογή συγκεκριμένων λεξικών για ταξινόμηση, την ελάττωση του πλήθους των στοιχείων των Εκπαιδευτικών Αντικειμένων που επιθυμούμε να παρέχουμε, ή την προσθήκη περιγραφών από άλλα σχήματα περιγραφής.

- Δημιουργοί και εκδότες μπορεί να χρησιμοποιούν το LOM σε συνδυασμό με άλλες προδιαγραφές για να προσδιορίσουν στο Εκπαιδευτικό Αντικείμενο περιγραφές που παρέχουν πληροφορίες όμοιες με αυτές που βρίσκονται στο εξώφυλλο και στα περιεχόμενα ενός παραδοσιακού εκπαιδευτικού βιβλίου.

Τα κύρια χαρακτηριστικά του LOM είναι τα εξής:

- XML DTDs ή XML schemas χρησιμοποιούνται για τον καθορισμό της σύνταξης και της σημασιολογίας του

- Παρέχει τα κατάλληλα γνωρίσματα για την περιγραφή ενός εκπαιδευτικού αντικειμένου (π.χ. όνομα στοιχείου, τύπος δεδομένου, ορισμός, λεξιλόγιο, μήκος πεδίου)

- Επικεντρώνεται σε ένα ελάχιστο σύνολο γνωρισμάτων για τη διαχείριση, την τοποθέτηση όπου βρίσκονται οι εκπαιδευτικοί πόροι και την αποτίμηση των εκπαιδευτικών αντικειμένων
Γενικά (general) | Η κατηγορία αυτή ομαδοποιεί τις γενικές πληροφορίες που περιγράφουν συνολικά το εκπαιδευτικό αντικείμενο.

Κύκλος ζωής (lifeCycle) | Περιγράφει την ιστορία και την τωρινή κατάσταση ενός εκπαιδευτικού αντικειμένου και αυτών που το επηρέασαν κατά την εξέλιξή του

Μετα-μεταδεδομένα (meta-Metadata) | Περιγράφει την ειδική πληροφορία για την ιδια την εγγραφή μεταδεδομένων (π.χ., ποιος δημιούργησε την εγγραφή, πότε και πότε)

Τεχνικά (technical) | Περιγράφει τις τεχνικές απαιτήσεις και χαρακτηριστικά ενός εκπαιδευτικού αντικειμένου

Εκπαιδευτικά (educational) | Περιγράφει τα εκπαιδευτικά και παιδαγωγικά χαρακτηριστικά ενός εκπαιδευτικού αντικειμένου

Δικαιώματα (rights) | Περιγράφει τα δικαιώματα και της συνθήκες χρήσης ενός εκπαιδευτικού αντικειμένου

Σχέσεις (relation) | Καθορίζει τη σχέση μεταξύ ενός εκπαιδευτικού αντικειμένου και άλλων εκπαιδευτικών αντικειμένων –στόχων

Σχόλια (annotation) | Παρέχει σχόλια για την εκπαιδευτική χρήση ενός εκπαιδευτικού αντικειμένου, για το ποιος δημιούργησε τα σχόλια και πότε

Ταξινόμηση (classification) | Περιγράφει το πώς ένα εκπαιδευτικό αντικείμενο είναι τοποθετημένο μέσα σε ένα συγκεκριμένο σύστημα ταξινόμησης

Πίνακας 1: Κατηγορίες του IEEE LOM

Μεταξύ άλλων, το IEEE LOM Final Draft v1.0 παρέχει κάποιους τύπους σχέσεων. Οπότε, με τη χρήση μεταδεδομένων IEEE LOM μπορεί να σχηματιστεί ο κατευθυνόμενος
ακυκλικός γράφος (DAG) των προαπαιτούμενων σχέσεων μεταξύ εκπαιδευτικών αντικειμένων του ιδίου ή παραπλήσιου επιπέδου συσπείρωσης.

<table>
<thead>
<tr>
<th>Είδος σχέσης</th>
<th>Πεδίο τιμών στο IEEE LOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is Part Of</td>
<td>Ispartof</td>
</tr>
<tr>
<td>Has Part</td>
<td>Haspart</td>
</tr>
<tr>
<td>Is Version Of</td>
<td>Isversionof</td>
</tr>
<tr>
<td>Has Version</td>
<td>Hasversion</td>
</tr>
<tr>
<td>Is Format Of</td>
<td>Isformatof</td>
</tr>
<tr>
<td>Has Format</td>
<td>Hasformat</td>
</tr>
<tr>
<td>References</td>
<td>References</td>
</tr>
<tr>
<td>Is Referenced By</td>
<td>Isreferencedby</td>
</tr>
<tr>
<td>Is Based On</td>
<td>Isbasedon</td>
</tr>
<tr>
<td>Is Basis For</td>
<td>Isbasisfor</td>
</tr>
<tr>
<td>Requires</td>
<td>Requires</td>
</tr>
<tr>
<td>Is Required By</td>
<td>Isrequiredby</td>
</tr>
</tbody>
</table>

Πίνακας 2: Τύποι σχέσεων του IEEE LOM

Η χρησιμοποίηση του LOM για την παροχή κάποιας λειτουργικότητας δεν προϋποθέτει την χρήση όλων των στοιχείων που ορίζονται στο μοντέλο, ούτε απαιτείται ο περιορισμός της πληροφορίας του μοντέλου. Η δημιουργία application profiles επιτρέπει στις κοινότητες χρηστών να προσδιορίσουν στοιχεία και λεξικά που θα χρησιμοποιήσουν. Τα στοιχεία αυτά μπορεί να ανήκουν σε metadata schemes διαφορετικά του LOM. Ομοίως τα λεξικά στο LOM μπορεί να συμπληρώνονται με τιμές επιθυμητές από την κοινότητα.

2.2.5 IMS question and test interoperability (IMS QTI)

Οι υπολογιστές σήμερα χρησιμοποιούνται όλο και περισσότερο για την αξιολόγηση γνώσεων και διεξαγωγή ερευνών σε πολλές περιπτώσεις. Το IMS QTI[3] είναι μια προδιαγραφή για την περιγραφή του υλικού που χρησιμοποιείται για την επίτευξη των προαναφερθέντων σκοπών.

Το QTI είναι σχεδιασμένο για να κάνει ευκολότερη την μεταφορά πληροφοριών όπως ερωτήσεις, ερωτηματολόγια, απαντήσεις ερωτηματολογίων και ερωτήσεων, στατιστικά αποτελέσματα που βασίζονται στις απαντήσεις των ερωτήσεων και των ερωτηματολογίων μεταξύ διαφορετικών e-learning συστημάτων. Παρόλο που η χρήση του IMS QTI δεν είναι υποχρεωτική για την δημιουργία ενός συστήματος ερωτηματολογίων η χρήση του θα μπορούσε να κάνει ευκολότερη την μεταφορά του εκπαιδευτικού υλικού σε ένα άλλο σύστημα σε κάποια μελλοντική χρονική στιγμή καθώς και τον διαμορφωτικό των απαντήσεων με άλλα συστήματα ηλεκτρονικής μάθησης συμβατά με το IMS QTI.
Οι προδιαγραφές IMS QTI υλοποιούνται σε ένα μεγάλο αριθμό e-learning συστημάτων. Πολλά από αυτά τα συστήματα συνεχίζουν να αποθηκεύουν τα δεδομένα σχετικά με τα ερωτηματολόγια σε διάφορα σχήματα, αλλά επιτρέπουν την εισαγωγή και την εξαγωγή δεδομένων σε άλλα συστήματα με την χρήση των προδιαγραφών του QTI.

Ποιο συγκεκριμένα το IMS QTI επιτρέπει:

- Την ανάπτυξη ευέλικτων διαλειτουργικών ερωτηματολογίων που περιέχουν ερωτήσεις διαφόρων τύπων. Περιέχει ένα σχήμα για την περιγραφή ερωτήσεων και ερωτηματολογίων ούτως ώστε η αποθήκευσή τους να είναι ανεξάρτητη από τα εργαλεία (Authoring Tools) που χρησιμοποιήθηκαν για την συγγραφή τους.

- Διευκολύνει η δημιουργία συστημάτων αποθήκευσης ερωτηματολογίων από ειδικούς διαφορετικών γνωστικών πεδίων.

- Παρέχει στα συστήματα διανομής ερωτηματολογίων την ικανότητα να καταγράфουν τις απαντήσεις των ερωτηματολογίων και των ερωτήσεων με συνεπή τρόπο. Επιτυγχάνεται η μεταφορά των αποτελεσμάτων σε συστήματα διεξαγωγής ερευνών (Survey Systems).

- Παρέχει στα συστήματα διεξαγωγής ερευνών να περιγράψουν κάποια στατιστικά αποτελέσματα όσον αφορά τις απαντήσεις των ερωτηματολογίων.

- Τέλος δεν υπάρχουν περιορισμοί στο σχεδιασμό του τελικού προϊόντος σχετικά με το user interface (διεπαφή χρήστη), τις τεχνολογίες ή τα παιδαγωγικά μοντέλα που χρησιμοποιούνται.
Τα οφέλη από την χρήση του QTI στον ακαδημαϊκό τομέα, στις επιχειρήσεις στους παροχείς περιεχομένου όσο και στις εταιρείες λογισμικού και είναι τα ακόλουθα:

- Μείωση ρίσκου λανθασμένων ερωτήσεων
- Μείωση χρόνου δημιουργίας ερωτήσεων
- Ευκολότερη η σύγκριση αποτελεσμάτων εξετάσεων διαφορετικών ιδρυμάτων
- Ανταλλαγή αποτιμήσεων υψηλής ποιότητας
- Δημιουργία μιας αγοράς περιεχομένου για συστήματα αποτίμησης
- Ενσωμάτωση προτυποποιημένων αποτιμήσεων για την αξιολόγηση της γνώσης των εργαζομένων σε επιχειρήσεις
- Συστηματική προσέγγιση δημιουργίας ερωτηματολογίων
- Ανταλλαγή υψηλής ποιότητας ερωτηματολόγιων

Όπως όλες οι προδιαγραφές της IMS έτσι και το QTI ορίζεται με την χρήση της XML για την επίτευξη της όσο μεγαλύτερης υκοθετήσης του. Στην ουσία το IMS QTI είναι κάποια XML σχήματα (XML schemas) τα οποία περιέχουν τους κανόνες δόμησης των XML αρχείων που περιγράφουν ερωτηματολόγια, αποτίμησης και αποτιμήσεις.

Η προδιαγραφή IMS Question and Test Interoperability ορίζει τις εξής βασικές δομές:

- Assessment: η βασική μονάδα ελέγχου
- Section: μονάδα υποδοχής άλλων sections ή items (βλ. παρακάτω) που αφορούν ένα κοινό στόχο
- Item: το βασικό μπλοκ ερωτηματολογίας στο οποίο περιέχονται οι ξεχωριστές ερωτήσεις

Το προτεινόμενο μοντέλο καθιστά δυνατή την ανταλλαγή πολλαπλών Assessments και οποιοδήποτε συνδυασμό Assessments, Sections και Items στο πλαίσιο μιας και μοναδικής δομής δεδομένων.
Κεφάλαιο 2 – Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

Ο κύριος σκοπός της προδιαγραφής είναι να επιτρέπει στους χρήστες την εισαγωγή και εξαγωγή ερωτήσεων (απλών και σύνθετων), ολοκληρωμένων τεστ, καθώς και να δίνει τη δυνατότητα ιδιωτικών προεκτάσεων του μοντέλου.

2.2.6 IMS Digital Repository Interoperability (DRI)

Η επιδίωξη της IMS Digital Repositories Interoperability[10] προδιαγραφής είναι να παρέχει συστάσεις σε ότι αφορά την ελάχιστη λειτουργικότητα που πρέπει να ικανοποιεί μια αποθήκη υλικού. Σε ευρύτερο επίπεδο, η προδιαγραφή ορίζει ότι οι ψηφιακές αποθήκες είναι συλλογές υλικού προσβάσιμες μέσω δικτύου χωρίς προηγενέστερη γνώση της δομής / αρχιτεκτονικής της συλλογής. Οι αποθήκες υλικού μπορεί να αποθηκεύουν ακριβώς αντικείμενα μεταδεδομένων ή μεταδεδομένα που περιεχόνταν το αντικείμενο. Τα αντικείμενα και τα μεταδεδομένα τους δεν είναι απαραίτητα να βρίσκονται αποθηκευμένα στην ίδια συλλογή. Η προδιαγραφή αυτή προτίθεται να χρησιμοποιηθεί σχήματα που έχουν ήδη οριστεί (π.χ IMS Meta-Data και Content Packaging), παρά να εισάγει νέα σχήματα.

Οι λειτουργίες που υποστηρίζονται είναι:

- **Search/Expose:** Η υποστήριξη αναζήτησης. Μπορεί να περιλαμβάνει αναζήτηση αντικειμένων που περιλαμβάνει η δυνατότητα αναζήτησης. Η λειτουργικότητα αναζήτησης ορίζει την εξέταση των μεταδεδομένων των αντικειμένων που βρίσκονται σε αποθήκη υλικού. Μία αποθήκη θα μπορεί να ερευνηθεί άμεσα ή με την χρήση της XQuery. Για την εξέταση των μεταδεδομένων γίνεται χρήση της XQuery.

- **Gather/Expose:** Λειτουργία μεταδεδομένων σχετικά με συλλογή ή αποθήκευση μεταδεδομένων από άλλες αποθήκες υλικού. Η λειτουργικότητα αναζήτησης (Gather) επιτρέπει την επικοινωνία της μεταδεδομένων από τις αποθήκες υλικού ώστε να χρησιμοποιηθούν σε επακόλουθες αναζήτησεις. Η λειτουργικότητα συλλογής μπορεί να ενεργητικά να ζητήσει μεταδεδομένα από μια αποθήκη υλικού (“pull”) ή μπορεί να συνδράμει σε μια υπηρεσία που ειδοποιεί το στοιχείο που ανακτήθηκε όταν έχουν προσταθεί, διαχωρίζει ή αλλαχθεί μεταδεδομένα στην αποθήκη υλικού (“push”).
Κεφάλαιο 2 – Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

• Submit/Store: Παρέχει αντικείμενο (περιεχόμενο και μεταδεδομένα) προς αποθήκευση σε αποθήκη υλικού. Μετά την αποθήκευση, το αντικείμενο είναι διαθέσιμο προς ανάκτηση.

• Request/Deliver: Η λειτουργικότητα αυτή επιτρέπει σε χρήστες να ανακτήσουν αντικείμενα τα οποία έχουν αντιπαθέτες με τις συναρτήσεις αναζήτησης. Η συνάρτηση αναζήτησης ανακτά αναγνώριστικά των αντικειμένων. Τα αναγνώριστικά αυτά αντιστοιχούν σε URL το οποίο χρησιμοποιείται για την ανάκτηση του αντικειμένου. Το πρωτόκολλο που χρησιμοποιείται για την διανομή των αντικειμένων εξαρτάται από τον τύπο του αντικειμένου.

• Alert/Expose: Οι συναρτήσεις της κατηγορίας αυτής παρέχουν μέθοδους για ενημέρωση των ενδιαφερόμενων για συγκεκριμένες αλλαγές στο περιεχόμενο ή την εισαγωγή αντικειμένων με συγκεκριμένες προδιαγραφές στην αποθήκη υλικού. Όταν στην αποθήκη υλικού υπάρχουν νέα μεταδεδομένα που υποστηρίζουν συγκεκριμένες απαιτήσεις, ένα alert μήνυμα αποστέλλεται στους χρήστες που έχουν εκδηλώσει ενδιαφέρον.

2.3 Σχετικές τεχνολογίες

2.3.1 ECLIPSE

Τα βασικά χαρακτηριστικά της πλατφόρμας είναι τα ακόλουθα:

• Workbench: η επιφάνεια εργασίας της πλατφόρμας, δηλαδή το σύνολο των γραφικών στοιχείων της πλατφόρμας με τα οποία έρχεται σε επαφή ο χρήστης κατά τη διάρκεια της εργασίας του με την πλατφόρμα
- **Workspace**: χώρος εργασίας στο τοπικό σύστημα αρχείων, στον οποίο αποθηκεύονται πληροφορίες

- **SWT**: (Standard Widget Toolkit): σύνολο από γραφικά δομικά στοιχεία υλοποιημένα με τέτοιο τρόπο ώστε να επιτρέπεται η ενσωμάτωσή τους με το τοπικό λειτουργικό σύστημα

- **JFace**: σύνολο γραφικών διαπαραστάσεων εμπλουτισμένα με κάποιες βασικές λειτουργίες, τις οποίες μπορεί εύκολα ο χρήστης να χρησιμοποιήσει, όπως δεντρικές αναπαραστάσεις, πίνακες, editors, παράθυρα ιδιοτήτων, κ.α.

- **Help**: μηχανισμός βοήθειας της πλατφόρμας που επιτρέπει παράλληλα την εμπλουτισμό της με νέα εγχειρίδια

- **Team**: δυνατότητα διαχείρισης / ανάπτυξης μίας εργασίας από πολλούς χρήστες ταυτόχρονα μέσω της χρήσης κατάλληλων μηχανισμών αποθήκευσης διαμορφωθέντων πόρων

Η αρχιτεκτονική του Eclipse παρουσιάζεται στην εικόνα 2.4.

Εικόνα 2-4: Γενική αρχιτεκτονική του Eclipse. Πάνω στο μικρό πυρήνα (Platform Runtime) του Eclipse προστίθενται plug-ins που εμπλουτίζουν τη λειτουργικότητά του.

Ένα παράδειγμα του interface του Eclipse παρουσιάζεται στην εικόνα 2.5. Σε αυτό φαίνονται δεντρικές αναπαραστάσεις, Editors και διάφορα παράθυρα ιδιοτήτων.
Εικόνα 2-5: Η πλατφόρμα ανάπτυξης λογισμικού Eclipse. Το περιβάλλον ανάπτυξης εφαρμογών του Eclipse αποτελείται από ένα σύνολο Editor και παραθύρων ιδιοτήτων, που περιέχουν διάφορες γραφικές αναπαραστάσεις όπως δεντρικές, πίνακες κ.α.

2.3.2 Berkeley Db Xml

Η βασική δομή αποθήκευσης της Berkeley Dbxml είναι τα XML έγγραφα. Η συγκεκριμένη βάση δεδομένων οργανώνει τα XML έγγραφα σε συλλογές (containers) και κάθε συλλογή μπορεί να περιέχει έγγραφα τα οποία βασίζονται σε κάποιο συγκεκριμένο σχήμα (σε έναν container, τα αρχεία που αποθηκεύονται, δεν χρειάζονται να υπακούουν όλα στο ίδιο σχήμα).
Κεφάλαιο 2 – Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

Σε αντίθεση με τις σχεσιακές βάσεις δεδομένων, οι οποίες αποθηκεύουν δεδομένα σε σχεσιακούς πίνακες, η Berkeley DB Xml έχει ως στόχο να αποθηκεύει αυθαίρετα δέντρα XML δεδομένων. Στην συνέχεια αυτά μπορούν να αντιστοιχηθούν και να ανακτηθούν, είτε ως πλήρη έγγραφο είτε ως μεμονωμένα τμήματα εγγράφου μέσω μιας XML γλώσσας αναζήτησης, όπως η XQuery.

Πλεονεκτήματα της XML βάσης Δεδομένων

Μια XML βάση δεδομένων έχει διάφορα πλεονεκτήματα από σχέση με τις σχεσιακές (relational) και αντικειμενοστραφής (object-oriented) βάσεις δεδομένων.

1. Δεδομένα αποθηκεύονται κατεύθυνση στην βάση δεδομένων χωρίς να χρειάζεται περαιτέρω επεξεργασία ή απόσπαση των δεδομένων από κάποιο έγγραφο.

2. Τα περισσότερα στοιχεία ενός εγγράφου, όπως κενά διαστήματα, παραμένουν ανέπαφα κατά την εισαγωγή του στην XML βάση δεδομένων.

3. Επαρωτήματα (Queries) επιστρέφουν τα έγγραφα XML ή τμήματα τους, το οποίο σημαίνει ότι η ιεραρχική δομή των πληροφοριών XML διατηρείται.

2.3.2.1 Αρχιτεκτονική της Oracle Berkeley DB XML

Η Oracle Berkeley DB XML, είναι χτισμένη στη κορυφή της Oracle Berkeley DB και ως αποτέλεσμα κληρονομεί σημαντικά χαρακτηριστικά και στοιχεία. Ειδικότερα, η ίδια προσθέτει στην κορυφή της Oracle Berkeley DB έναν document parser, έναν XML indexer και μια μηχανή XQuery με στόχο την επίπεδη επικοινωνία και αποδοτικότερη ανάκτησης δεδομένων. Στην εικόνα παρουσιάζεται η αρχιτεκτονική της Oracle Berkeley DB XML.

Εικόνα 2-6: αρχιτεκτονική Oracle Berkeley Db Xml

36

Η Oracle Berkeley DB XML υποστηρίζει την XQuery 1.0 (H Xquery αποτελεί πλέον τη κατεξοχήν γλώσσα ερωτήσεων για πρόσβαση σε XML δεδομένα) και την XPath 2.0, XML συνδιαλλαγή, ελέγχο εγκυρότητας XML εγγράφων. Πιο συγκεκριμένα, η XQuery μηχανή χρησιμοποιεί ένα εξελιγμένο, βεβαιωμένο στο κόστος, βελτιστοποιημένο ερώτημα και υποστηρίζει προ-μεταγλωττισμένη εκτέλεση ερώτησης με ενσωματωμένες μεταβλητές. Μεγάλα έγγραφα μπορούν να αποθηκεύονται ολόκληρα ή κατατμημένα σε κόμβους, επιτυγχάνοντας έτσι αποδοτικότερη ανάκτηση και πιο ευελιξία διαχείρισης XML κόμβων, στοιχείων, κατεξοχήν κλάση, κατεξοχήν στοιχείων, κατεξοχήν δεικτών και συνδιαλλαγών.

2.3.2.2 Λειτουργικότητα της Oracle Berkeley DB XML

Στο σημείο αυτό θα αναλύσουμε τη παρεχόμενη λειτουργικότητα της Oracle Berkeley DB XML, η οποία συνιστάται στα ακόλουθα:

- Περιγραφή του ρόλου του XML Manager και των containers (συλλογών)
- Εισαγωγή XML εγγράφων στους containers
- Χρήση της XQuery με την BDB XML
- Διαχείριση των εγγράφων στους containers
- Χρήσης BDB XML δεικτών και συνδιαλλαγών

2.3.2.2.1 XML manager και containers

Ο XML Manager αποτελεί μια υψηλού επιπέδου κλάση που χρησιμοποιείται για τη διαχείριση των αντικειμένων μιας BDB XML εφαρμογής. Τα αντικείμενα τύπου XML Manager δίνουν την δυνατότητα για:
1. Διαχείριση των συλλογών (containers). Αυτό περιλαμβάνει τη δημιουργία, την ανοιγμα, τη διαγραφή και τη μετονομασία των containers.

2. Δημιουργία ροών εισόδου που χρησιμοποιούνται για τη φόρτωση των XML εγγράφων στις συλλογές (containers).

3. Δημιουργία XmlDocument, XmlQueryContext, XmlUpdateContext αντικειμένων.
 a. Ένα XmlDocument αντικείμενο αποτελεί τη μονάδα αποθήκευσης μέσα στον container.
 b. Ένα XmlQueryContext αντικείμενο ενσωματώνει το περιβάλλον μέσα στο οποίο εκτελείται μια ερώτηση προς μια συλλογή (container).
 c. Ένα XmlUpdateContext αντικείμενο ενσωματώνει το περιβάλλον μέσα στο οποίο εκτελούνται λειτουργίες ενημέρωσης προς μια συλλογή (container).

4. Προετοιμασία και εκτέλεση των XML ερωτήσεων.

5. Δημιουργία ενός αντικειμένου συνδιαλλαγής.

Ο XML Manager αποτελεί το μοναδικό τρόπο για την κατασκευή BDB XML αντικειμένων και ως αποτέλεσμα ο ρόλος του είναι πρωταγωνιστικός σε κάθε BDB XML εφαρμογή.

Πριν την αρχικοποίηση του XML Manager, πρέπει να ληφθούν σημαντικές αποφάσεις ως προς το περιβάλλον της βάσης δεδομένων (database environment).

Ο χρήστης δύναται να χρησιμοποιήσει ένα περιβάλλον δημιουργώντας το με σαφήνεια (explicitly) ή να επιτρέψει στον XML Manager constructor να διαχειριστεί το περιβάλλον για τον ίδιο (implicitly). Αν ο χρήστης δημιουργήσει το περιβάλλον αυτό σαφώς, τότε του δίνεται η δυνατότητα να ενεργοποιήσει σημαντικά χαρακτηριστικά στην BDB XML όπως logging, υποστήριξη transaction, υποστήριξη για multithreaded και multiprocess εφαρμογές. Αντίθετα, αν επιτρέψει στον XML Manager constructor να δημιουργήσει και να ανοίξει το περιβάλλον για τον ίδιο, τότε το περιβάλλον αυτό έχει διαμορφωθεί για να επιτρέπει multithreaded διαμοίραση του περιβάλλοντος και των υποκείμενων βάσεων δεδομένων. Το σοβαρό μειονέκτημα για την περίπτωση αυτή είναι ότι όλα τα υπόλοιπα χαρακτηριστικά δεν είναι ενεργοποιημένα για το περιβάλλον αυτό.

Στην BDB XML τα XML έγγραφα αποθηκεύονται σε containers μέσω κατάλληλης δημιουργίας αντικειμένων της κλάσης XmlContainer. Ένας container αποτελεί ένα αρχείο
Κεφάλαιο 2 – Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

στο δίσκο στο οποίο αποθηκεύονται όλα τα δεδομένα που σχετίζονται με τα έγγραφα, περιλαμβάνοντας τους δείκτες και τα μεταδεδομένα.

Σε έναν container της Berkeley DB XML τα έγγραφα μπορεί να αποθηκεύονται είτε ολόκληρα χωρίς καμία διαχείριση των αλλαγών γραμμής και των κενών διαστημάτων, είτε ως ατομικοί κόμβοι.

Συγκεκριμένα, η αποθήκευση σε επίπεδο κόμβου ενδείκνυται και είναι ταχύτερη από την αποθήκευση ολόκληρου του εγγράφου. Αντίθετα, ενδείκνυται η χρήση της αποθήκευσης ολόκληρου του εγγράφου για τις παρακάτω περιπτώσεις:

1. Η απόδοση φόρτωσης είναι πιο σημαντική από την απόδοση ερώτησης.
2. Απαιτείται συχνά η ανάκτηση ολόκληρου του εγγράφου.
3. Το μέγεθος των εγγράφων είναι τόσο μικρό που το πλεονέκτημα ως προς την απόδοση ερώτησης είναι αμελητέο.

Αξίζει να σημειωθεί ότι υπάρχει δυνατότητα μετονομασίας ή διαγραφής ενός container εφόσον βέβαιο ο container έχει κλείσει.

2.3.2.2.2 Εισαγωγή XML εγγράφων στους containers

Για τη διαχείριση των εγγράφων στην Oracle Berkeley DB XML, πρέπει πρωτίστως τα έγγραφα να φορτωθούν σε containers. Υπάρχουν οι εξής τρόποι για τη προσθήκη ενός XML εγγράφου σε ένα container:

1. Με string αντικείμενο που κρατά ολόκληρο το έγγραφο.
2. Με ροή εισόδου που δημιουργείται από το όνομα του αρχείου.
3. Με ροή εισόδου που δημιουργείται από το URL.
4. Με ροή εισόδου που αναφέρεται σε buffer μνήμης.
5. Με ροή εισόδου που αναφέρεται σε standard είσοδο.

Για την εισαγωγή ενός XML εγγράφου σε ένα container πρέπει να πραγματοποιηθούν τα εξής βήματα:

- Δημιουργία της ροής εισόδου με το περιεχόμενο του εγγράφου ή φόρτωση του εγγράφου σε ένα string αντικείμενο.
• Παροχή ενός ονόματος για το έγγραφο. Για την περίπτωση που δεν παρέχεται σαφώς ένα όνομα από το χρήστη, τότε μέσω κατάλληλης συνάρτησης παράγεται μοναδικό όνομα.
• Δημιουργία ενός XML.UpdateContext αντικειμένου. Το αντικείμενο αυτό όπως έχει ήδη αναφερθεί αφορά το γενικευμένο πλαίσιο μέσα στο οποίο ενημερώνεται ο container.

2.3.2.2.3 Χρήση της XQuery

Η ανάκτηση της πληροφορίας από τους BDB XML containers πραγματοποιείται με τη χρήση της XQuery[5]. Όπως έχει ήδη προαναφερθεί, η XQuery αποτελεί τη γλώσσα που σχεδιάστηκε για να πραγματοποιεί ερωτήσεις σε XML έγγραφα.

Πιο συγκεκριμένα, η XQuery είναι υποθέση για τις παρακάτω ενέργειες:
• Απευθύνει ερώτηση σε ένα ή πολλαπλά έγγραφα.
• Απευθύνει ερώτηση σε υπό-τμήματα του εγγράφου, θέτοντας ως κριτήρια τιμές ατομικών κόμβων εγγράφου.
• Διαχειρίζεται και μετασχηματίζει τα αποτελέσματα μιας ερώτησης.

Τα αποτελέσματα μιας ερώτησης είναι ένα σύνολο από XmlResults αντικείμενα. Για την εξέταση των αποτελεσμάτων πραγματοποιείται επανάληψη στο σύνολο των αποτελεσμάτων (resultSet), ανακτώντας κάθε στοιχείο του συνόλου ως ένα XmlValue αντικείμενο. Η πληροφορία από το στοιχείο αυτό αποτελεί συνήθως eite ως ένα string αντικείμενο eite ως ένα XmlDocument αντικείμενο. Για περισσότερες λεπτομέρειες σχετικά με την XQuery ανατρέξτε στην ενότητα 2.2.2.

2.3.2.2.4 Διαχείριση εγγράφων στους containers

Η BDB XML παρέχει APIs για διαχείριση, αντικατάσταση και τροποποίηση των εγγράφων που αποθηκεύονται στους containers. Πιο συγκεκριμένα, παρέχεται δυνατότητα διαχείρισης ενός εγγράφου από συγκεκριμένο container προωθώντας eite τo ακριβές το όνομα eite το idio to XmlDocument αντικείμενο. Επιπρόσθετα, είναι δυνατή η αντικατάσταση ενός εγγράφου στην ολότητα του και η τροποποίησή του σε συγκεκριμένα μόνο μέρη του. Τα βήματα για την αντικατάσταση ενός εγγράφου είναι τα εξής:

1. Ανάκτηση του εγγράφου από τον container στον οποίο ανήκει.
Κεφάλαιο 2 – Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

2. Ορισμός του περιεχομένου του με βάση τις επιθυμητές αλλαγές.
3. Ενημέρωση του αλλαγμένου εγγράφου για την αποθήκευση του νέου εγγράφου στον container.

Στη συνέχεια, παρέχεται μηχανισμός για την τροποποίηση ενός εγγράφου χωρίς τη χρήση του μηχανισμού ενισχύσεως που περιγράφηκε παραπάνω. Αυτό πραγματοποιείται με την χρήση XmlModify αντικειμένων και είναι ένα πολύ σημαντικό βήμα καθώς αποφεύγεται η ανάγκη αποθήκευσης ολόκληρου του εγγράφου στη μνήμη. Ειδικότερα, οι XmlModify μέθοδοι προσδιορίζουν μια σειρά βημάτων αλλαγών που επιτρέπουν προσθήκη, διαγραφή, μετονομασία, αντικατάσταση κόμβων του εγγράφου. Όταν ολοκληρωθούν τα επιθυμητά βήματα αλλαγών, ακολουθεί η εφαρμογή τους είτε σε ένα συγκεκριμένο έγγραφο είτε σε ένα σύνολο εγγράφων.

2.3.2.2.5 Χρήση BDB XML δεικτών

Η BDB XML παρέχει ένα ευέλικτο και εύρωστο μηχανισμό δεικτοδότησης που βελτιώνει σημαντικά την απόδοση των BDB XML ερωτήσεων. Η σχεδίαση της στρατηγικής αποτελεί ένα από τα πιο σημαντικά σημεία κατά τη σχεδίαση μιας BDB εφαρμογής βασιζόμενης σε XML γλώσσα. Για να είναι αποτελεσματική η χρήση των δεικτών, ο σχεδιασμός των δεικτών πρέπει να γίνει για τις πιο συχνά εμφανιζόμενες ερωτήσεις. Επιπλέον, οι δείκτες μπορούν να ενημερώνονται ή να διαγράφονται σε περίπτωση απαιτήσεων για αλλαγές στην εφαρμογή. Λέξεις σημειώσεις ότι ο ορισμός των δεικτών γίνεται τόσο σε περιεχόμενο εγγράφου όσο και σε μεταδεδομένα. Ειδικότερα, ο τύπος ενός δείκτη καθορίζεται από τους εξής τύπους πληροφορίας:

1. Μοναδικότητα (uniqueness)
2. Τύποι μονοπατιού (path types)
3. Τύποι κόμβου (node types)
4. Τύποι κλειδιού (key types)

Η μοναδικότητα εγγυάται ότι η τιμή που δεικτοδοτείται είναι μοναδική σε έναν συγκεκριμένο container. Εστω για παράδειγμα ότι τίθεται ένας δείκτης για ένα χαρακτηριστικό και ότι δηλώνεται να είναι μοναδικός. Αυτό σημαίνει ότι η τιμή του δεικτοδοτείται για το συγκεκριμένο χαρακτηριστικό πρέπει να είναι μοναδική μέσα στον container. Εξ ορισμού, οι δεικτοδοτούμενες τιμές δεν είναι μοναδικές. Αντιστοιχίζοντας το XML έγγραφο ως ένα δέντρο από κόμβους, διαχωρίζονται δύο είδη στοιχεία μονοπατιού στο
Κεφάλαιο 2 – Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

δέντρο. Ο ένας τύπος είναι απλά ένας κόμβος, όπως είναι ένα στοιχείο ή ένα χαρακτηριστικό μέσα στο έγγραφο. Ο άλλος τύπος είναι κάθε τοποθεσία μέσα σε ένα μονοπάτι όπου συναντώνται δύο κόμβοι. Κάτω από αυτές τις συνθήκες, ο τύπος μονοπατιού προσδιορίζει τον τύπο του στοιχείου μονοπατιού που πρόκειται να δεικτοδοτηθεί.

Όσον αφορά στους τύπους μονοπατιών, διαχειρίζονται τα παρακάτω:

1. Τύπος κόμβου (Node): δηλώνει τη δεικτοδότηση ενός ατομικού κόμβου στο μονοπάτι.
2. Τύπος κορυφής (Edge): δηλώνει τη δεικτοδότηση ενός τμήματος του μονοπατιού στο οποίο δύο κόμβοι συναντώνται.

Προτείνεται η χρήση δεικτών μονοπατιού για τη βελτίωση της απόδοσης ερωτήσεων στις οποίες δεν επικαλύπτονται μεταξύ τους συνόματα κόμβων. Αντίθετα, η χρήση δεικτών μονοπατιού για την διαχείριση ερωτήσεων στις οποίες ένα συγκεκριμένο κόμβο χρησιμοποιείται σε πολλά πλαίσια (contexts) μέσα στο ίδιο έγγραφο. Στη συνέχεια, οι τύποι κόμβου (node types) ενός δείκτη διαχείρίζονται σε κόμβους στοιχείου, χαρακτηριστικών και μεταδεδομένων ανάλογα με το είδος της πληροφορίας στην οποία εξετάζει η εκάστοτε ερώτηση.

Ακόμη, οι τύποι κλειδιού ενός δείκτη παίρνουν τις τιμές:

- ισότητας (equality)
- παρουσία (presence)
- substring

Ένας δείκτης με τύπο ισότητας βελτιώνει την απόδοση ερωτήσεων που αναζητούν κόμβους με συγκεκριμένη τιμή. Από την άλλη πλευρά, ένας δείκτης με τύπο παρουσία βελτιώνει την απόδοση ερωτήσεων που αναζητούν την παρουσία ή όχι κόμβων. Επιπλέον, ένας δείκτης με τύπο substring βελτιώνει την απόδοση ερωτήσεων που αναζητούν κόμβους των οποίων η τιμή περιλαμβάνει το δομένο substring. Επιπρόσθετα, υπάρχει και ο συντακτικός τύπος ενός δείκτη που προσδιορίζει τη σύνταξη της δεικτοδοτημένης τιμής (string, boolean, float, time κτλ).

Εν κατακλείδι, ο συνδυασμός των παραπάνω τύπων με το καλύτερο δυνατό τρόπο για τη επίτευξη βέλτιστης απόδοσης ερώτησης αποκαλείται στρατηγική δεικτοδότησης. Ειδικότερα, η μορφή μιας στρατηγικής δεικτοδότησης είναι η παρακάτω:

• ισότητας (equality)
• παρουσία (presence)
• substring
Οι δείκτες τίθενται σε ένα container με χρήση του καθορισμού δείκτη σε container (container’s index specification). Επιπλέον, υπάρχει δυνατότητα προσθήκης, διαγραφής καθώς και αντικατάστασης μέσω του παραπάνω καθορισμού.

2.3.2.2.6 Χρήση συνδιαλλαγών

Οι BDB XML συνδιαλλαγές επιτρέπουν την αντιμετώπιση μιας ή περισσότερων λειτουργιών σε ένα ή περισσότερους containers σαν μια μοναδική μονάδα εργασίας. Πιο συγκεκριμένα, η BDB XML παρέχει πλήρη, ACID προστασία όπως και η BDB υιοποιώντας τις εξής αρχές:

- Ατομικότητα
- Συνέπεια
- Απομόνωση
- Ανθεκτικότητα

Για την ενεργοποίηση των συνδιαλλαγών πρέπει να ενεργοποιηθεί πρωτίστως ο χώρος για τη μνήμη, τα υποσύστημα (Logging και το Locking αντίστοιχα και βέβαια το υποσύστημα των συνδιαλλαγών). Μόλις ενεργοποιηθούν οι συνδιαλλαγές για το περιβάλλον και για τον manager, πρέπει να ενεργοποιηθούν επίσης και για τους containers που ανοίγουν.

Τα βήματα που πρέπει να εκτελεστούν για τη προστασία μιας ή περισσότερων λειτουργιών είναι τα ακόλουθα:

1. Άνοιγμα περιβάλλοντος και containers ώστε να υποστηρίζονται οι συνδιαλλαγές.
2. Δημιουργία XmlTransaction αντικειμένου (create transaction).
3. Εκτέλεση των λειτουργιών, παραδίδοντας το XmlTransaction αντικείμενο σε κάθε μέθοδο ανάγνωσης ή εγγραφής στους containers που συμμετέχουν στη συνδιαλλαγή.
4. Με την ολοκλήρωση όλων των λειτουργιών της συνδιαλλαγής, εκτελείται η συνδιαλλαγή (commit transaction).
5. Αν κάποια λειτουργία που συμμετέχει στη συνδιαλλαγή παρουσιάσει εξαίρεση, τότε η συνδιαλλαγή τερματίζεται (abort transaction).
2.3.2.2.7 Χειρισμός των εξαίρεσεων και εκσφαλμάτωση

Στην παράγραφο αυτή γίνεται μια σύντομη αναφορά στα εργαλεία εκσφαλμάτωσης και χειρισμού των εξαίρεσεων που προσφέρει το BDB XML API. Είναι χαρακτηριστικό ότι όλες οι BDB XML λειτουργίες δύναται να ρίξουν μια εξάρσειση και ως εκ τούτου πρέπει να βρίσκονται μέσα σε <try> μπλοκ ή η ίδια η μέθοδος να ορίζει μια throwable εξαίρεση. Οι BDB XML λειτουργίες ρίχνουν (throws) XML Exception αντικείμενα. Η XML Exception έχει κληρονομήσει από την Oracle Berkeley DB Exception κλάση, η οποία έχει με τη σειρά της κληρονομήσει από την Java Exception κλάση. Συνεπώς, κάθε BDB Exception μπορεί να παιχτεί από την Exception , εισόδημα αν και για λόγους σκέψεων πρέπει να παράγει κάθε τύπος εξαίρεσης ατομικά. Όμως, ενδέχεται σε πολλές περιπτώσεις η εξαίρεση να μην περάει αρκετή πληροφορία για την εκσφαλμάτωση, με αποτέλεσμα να υπάρχει ανάγκη εμφάνισης της πληροφορίας με χρήση ροών καθών (error streams). Η δημιουργία μιας τέτοιας ροής πραγματοποιείται κατά την αρχικοποίηση του XML Manager και του περιβάλλοντος.

2.3.3 SOAP /WSDL/ UDDI (υπηρεσίες ιστού)

2.3.3.1 Υπηρεσίες Ιστού

Οι Υπηρεσίες Ιστού (Web Services) είναι μια τεχνολογία που επιτρέπει στις εφαρμογές να επικοινωνούν μεταξύ τους ανεξάρτητως πλατφόρμας και γλώσσας προγραμματισμού. Μια Υπηρεσία Ιστού είναι μια διασπορική λογισμική (software interface) που περιγράφει μια συμπλήρωμα από λειτουργίες, οι οποίες μπορούν να χρησιμοποιηθούν από το δίκτυο μέσω πρότυπι μεγάλων XML. Χρησιμοποιεί πρότυπα βασισμένα στη γλώσσα XML, για να περιγράψει μια λειτουργία (operation) προς εκτέλεση και τα δεδομένα προς ανταλλαγή με κάποια άλλη εφαρμογή.

Η αρχιτεκτονική των Υπηρεσιών Ιστού (ΥΙ) παρέχει το βασικό πλαίσιο πάνω στο οποίο έχει στηριχθεί η λειτουργία των Υπηρεσιών Ιστού, καθώς αυτός έχει εφαρμογή προς την περιγραφή τους, την εφαρμογή τους, καθώς και την μεταξύ τους επικοινωνία. Στην Αρχιτεκτονική των Υπηρεσιών Ιστού συναντώνται τρεις βασικοί ρόλοι: ο Παροχέας Υπηρεσιών (Service Provider), ο Καταναλωτής Υπηρεσιών (Service Consumer) και ο Κατάλογος Υπηρεσιών (Service Registry). Ο Παροχέας Υπηρεσιών είναι υπεύθυνος για την ανάπτυξη μιας υπηρεσίας, τη δημιουργία της περιγραφής της και τη δημοσίευση της περιγραφής αυτής σε έναν ή περισσότερους καταλόγους (registry). Ο Καταναλωτής Υπηρεσιών είναι υπεύθυνος για την εύρεση της περιγραφής μιας ΥΙ, η οποία έχει δημοσιοποιηθεί σε έναν κατάλογο. Ο
Κατάλογος Υπηρεσιών επιτρέπει στους υποψήφιους καταναλωτές να ψάξουν στην συλλογή από περιγραφές υπηρεσιών την οποία διαθέτει και να ανακαλύψουν την υπηρεσία που ταιριάζει με τις απαιτήσεις τους.

Οι τεχνολογίες οι οποίες έχουν αναπτυχθεί με σκοπό την υποστήριξη των ΥΙ είναι το πρωτόκολλο SOAP (Simple Object Access Protocol)[13], η γλώσσα WSDL (Web Service Description Language)[14] και οι UDDI προδιαγραφές (Repository for Universal Description, Discovery and Integration). Η παρακάτω εικόνα δείχνει πώς η αρχιτεκτονική των ΥΙ χρησιμοποιεί τις τεχνολογίες αυτές.

Εικόνα 2-7: Στην Αρχιτεκτονική των Υπηρεσιών Ιστού συναντάται τρεις βασικοί ρόλοι: ο Παροχέας Υπηρεσιών (Service Provider), ο Καταναλωτής Υπηρεσιών (Service Consumer) και ο Κατάλογος Υπηρεσιών (Service Registry). Οι τρεις αυτοί ρόλοι αλληλεπιδρούν μεταξύ τους μέσω των τεχνολογιών οι οποίες έχουν αναπτυχθεί με σκοπό την υποστήριξη των ΥΙ (SOAP, WSDL, UDDI).

Όπως φαίνεται στην εικόνα, στην αρχιτεκτονική των υπηρεσιών ιστού του ρόλου του Καταλόγου Υπηρεσιών έχει η UDDI registry. Οι λειτουργίες για την εγγραφή και την εύρεση των υπηρεσιών υλοποιούνται με χρήση των APIs που διαθέτει η registry για εύρεση (UDDI Inquiry) και δημοσιοποίηση (UDDI Publish). Η περιγραφή της υπηρεσίας γίνεται μέσω ενός WSDL εγγράφου και χρησιμοποιείται για να γίνει η ένωση του πελάτη με την υπηρεσία. Τέλος, όλες οι διαδικασίες που αφορούν στη μορφοποίηση και τη μεταφορά των μηνυμάτων μεταξύ των υπηρεσιών γίνονται μέσω του πρωτοκόλλου SOAP.

Όταν ο υπεύθυνος για την ανάπτυξη ενός λογισμικού έχει την ανάγκη χρήσης μιας νέας υπηρεσίας, αρχικά βρίσκει την επιθυμητή υπηρεσία, είτε δημιουργώντας και υποβάλλοντας μια ερώτηση προς την registry, είτε με το ξεφύλλισμα αυτής. Ο υπεύθυνος για την ανάπτυξη
Κεφάλαιο 2 – Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

tου λογισμικού ερμηνεύει έπειτα την περιγραφή της διεπαφής της υπηρεσίας (νομίζω μέσω κάποιων χαρακτηριστικών επικειόνων, σχολίων, ή κάποιας πρόσθετης τεχνητής έννοιας υπάρχει) και πραγματοποιεί μια κλήση προς την υπηρεσία μέσα στην εφαρμογή που αναπτύσσει. Αυτή η εφαρμογή έχει το ρόλο του Καταναλωτή της υπηρεσίας κατά τη διάρκεια της αλληλεπίδρασης. Σε αυτό το σημείο, ο Καταναλωτής της υπηρεσίας μπορεί αυτόματα να καλέσει την υπηρεσία (που παρέχεται από τον παροχέα υπηρεσιών) χρησιμοποιώντας το πρωτόκολλο επικοινωνίας υπηρεσιών (ιστού SOAP).

Ακολουθεί ανάλυση των τεχνολογιών που αναφέρθηκαν παραπάνω:

2.3.3.2 SOAP

Το SOAP (Simple Object Access Protocol)[13] είναι επίσης ένα άλλο πρότυπο της W3C [W3C Simple Object Access Protocol (SOAP)] και χρησιμοποιείται αρκετά με στόχο την αποστολή απλών αντικειμένων (αρχείων, εφαρμογών, κλπ.) σε XML μορφή. Γι’ αυτό και κάθε web service που χρησιμοποιεί SOAP μπορεί να λάβει αιτήσεις για συγκεκριμένες λειτουργίες απλά δεχόμενο αντικείμενα σε XML.

Η χρήση του SOAP πρωτοκόλλου γίνεται συνήθως πάνω από το πρωτόκολλο HTTP αλλά μπορεί να λειτουργήσει και με άλλα πρωτόκολλα π.χ. FTP, SMTP κ.α. Πλέον, οι περισσότερες γλώσσες προγραμματισμού από την Delphi v7 μέχρι το Visual Studio .net, την PHP, την JSP και άλλες πολλές, υποστηρίζουν τη δημιουργία SOAP Servers με πάρα πολύ απλό τρόπο. Το μόνο που πρέπει να κάνει κανείς είναι να καθορίσει τις λειτουργίες που πρέπει να γίνουν όταν ο server δεχθεί κάποιο αίτημα προς εξυπηρέτηση.

Η δομή ενός SOAP Message καθώς και η λειτουργικότητα κάθε υποενότητας που το αποτελεί φαίνεται στην παρακάτω εικόνα:
Κεφάλαιο 2 – Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

Εικόνα 2-8: Η δομή ενός soap μηνύματος

Σύμφωνα λοιπόν με την παραπάνω εικόνα μπορούμε να διακρίνουμε τα εξής:

SOAP message: Είναι ένα XML έγγραφο

Envelope: Το πραγματικό μήνυμα που θα υποστεί επεξεργασία

Headers: Προαιρετικό στοιχείο που καθορίζει συγκεκριμένες απαιτήσεις της εφαρμογής

Body: Το περιεχόμενο του μηνύματος

- Το κύριο σώμα μπορεί να έχει μόνο XML περιεχόμενο ή PRC πληροφορία (π.χ. όνομα μεθόδων, παραμέτρων κτλ) κωδικοποιημένη σε XML.

- Το κύριο σώμα ενός μηνύματος απάντησης (response) μπορεί προαιρετικά να περιέχει SOAP Fault στοιχεία (συγκεκριμένου κωδικούς λάθους μαζί με περιγραφή)
2.3.3.3 WSDL

Η WSDL (Web Service Description Language)[14] [W3C Web Services Description Language (WSDL)] είναι μία γλώσσα σε XML μορφή η οποία περιγράφει μία υπηρεσία ιστού. Είναι για κάθε μία υπηρεσία ιστού που δημιουργείται, αντίστοιχα πρέπει να δημιουργείται ένα αρχείο WSDL στο οποίο θα καταγράφονται όλες οι πληροφορίες για την ίδια την υπηρεσία. Πιο συγκεκριμένα εκεί καταγράφεται το πού βρίσκεται ο server (σε πια διεύθυνση), ποιες λειτουργίες υποστηρίζει καθώς και πώς δέχεται και πώς αποδίδει τα δεδομένα για κάθε λειτουργία.

Η δομή του WSDL καθώς και η λειτουργικότητα κάθε υποστηρίζει κατά υποστήρισης που το αποτελεί φαίνεται στην παρακάτω εικόνα:

Εικόνα 2-9: Η δομή του WSDL

Σύμφωνα λοιπόν με την παραπάνω εικόνα διαχρονίζονται τα εξής:

Definitions: Το ρεζινό στοιχείο όλων των WSDL εγγράφων. Ορίζει το όνομα της υπηρεσίας ιστού, περιέχει πολλά πολλά namespaces και περιέχει τα στοιχεία της υπηρεσίας που θα περιγράφονται.

Types: Περιγράφει όλους τους τύπους δεδομένων μεταξύ πελάτη και εξουσιοδοτημένη.
2.3.3.4 UDDI

Το UDDI (Universal Description, Discovery, and Integration) [Universal Description, Discovery and Integration of Web Services (UDDI)] αποτελεί ένα πρωτόκολλο καταχώρησης για web services. Χρησιμοποιείται για να μπορούμε να παρέχουμε πληροφορίες για τα web services. Κάθε καταχώρηση περιέχει το wsdl αρχείο και τη διεύθυνση που λειτουργεί η υπηρεσία στο Internet. Επιπρόσθετα σε κάθε καταχώρηση υπάρχουν και διάφορες άλλες πληροφορίες για την υπηρεσία που σχετίζονται με τον ιδιοκτήτη της, την πολιτική του κ.α. Υπάρχουν διαφορετικοί τύποι καταχωρήσεων μίας υπηρεσίας. Πιο συγκεκριμένα υπάρχουν καταχωρήσεις που μπορούν να γίνουν για υπηρεσίες από όλο τον κόσμο και που απευθύνονται σε όλο τον κόσμο, αλλά και καταχωρίσεις που απευθύνονται μόνο σε εξειδικευμένες επιχειρήσεις προωθώντας έτσι και το business to business μοντέλο συνεργασίας. Τέλος υπάρχουν και καταχωρήσεις υπηρεσιών για πιο εξειδικευμένες περιπτώσεις. Γνωρίζοντας όμως μία επιχώρηση το UDDI μπορεί με πολύ απλό τρόπο να αναζητήσει και να βρει το αρχείο wsdl για κάποια συγκεκριμένη υπηρεσία και κατόπιν να την εκμεταλλευτεί εξίσου απλά και γρήγορα.

Τέλος να αναφερθούμε σε κάποια από τα πλεονεκτήματα που παρέχει η αρχιτεκτονική των web services.

Διαλειτουργικότητα. Ένα web service παρέχει ανεξαρτησία τόσο από λειτουργικό σύστημα όσο και από το hardware. Οποιοδήποτε πρόγραμμα που συμβαδίζει με αυτή την τεχνολογία μπορεί πολύ εύκολα να προσπελάσει μία τέτοια υπηρεσία.

Ενσωμάτωση. Σε ένα υπάρχον λογισμικό σύστημα που λειτουργεί μέσα στο Internet η δημιουργία ενός web service δεν απαιτεί αλλαγές στον μηχανισμό του συστήματος.

Διαθεσιμότητα και δημοσίευση. Οι πληροφορίες για τα web services δημοσιεύονται οπότε η εύρεση και η χρήση τους μπορεί να είναι ταχύτατες.
Επέκταση. Ένα έτοιμο web service είναι δυνατό να ανανεωθεί με εύκολο τρόπο παρέχοντας έτσι επιπρόσθετες υπηρεσίες στους χρήστες του.

Μικρό κόστος δημιουργίας και χρήσης. Εφόσον σε ένα σύστημα λογισμικού υπάρχει ήδη κάποια διαδικασία που χρειάζεται να επεκταθεί σε on-line υπηρεσία, η δημιουργία του web service κοστίζει ελάχιστα. Επίσης το κόστος ενσωμάτωσης ενός web service σε κάποιο website ή σε δικτυακή εφαρμογή είναι πάρα πολύ μικρό. Ακόμα και στις περιπτώσεις που η χρήση κάποιου web service γίνεται με ενοπλασμένη σίγουρα το συνολικό κόστος της χρήσης είναι αρκετά πιο μικρό από το κόστος δημιουργίας της υπηρεσίας αυτής.

Χρήση συστημάτων λογισμικού. Όλα τα συστήματα λογισμικού και ειδικότερα τα websites που χρησιμοποιούν έτοιμες υπηρεσίες γίνονται πιο λειτουργικά και πιο φυλικά αφού παρέχουν περισσότερες υπηρεσίες στους χρήστες.

2.4 Περίληψη
Σε αυτό το κεφάλαιο αναφέραμε τις κυρίοτερες τεχνικές προδιαγραφών και πρότυπα για ηλεκτρονική μάθηση, τα οποία έχουν σχεδιαστεί για να διευκολύνουν την περιγραφή, την αλληλομορφία και τη διανομή του εκπαιδευτικού υλικού και της πληροφορίας που αφορά τον μαθητή. Συγκεκριμένα, παρουσίασαμε τις κυρίοτερες χαρακτηριστικές της XML και XML Schema. Παρουσιάσαμε στοιχεία που αφορούν στην XQuery γλώσσα αναζήτησης με την οποία προσπελάνουμε και ανακούμε τις αντικείμενα ή τμήματα των αντικειμένων που έχουμε αποθηκεύσει στις αποθήκες υλικού. Αναφέρθηκαμε στο πρότυπο METS (Metadata Encoding and Transmission Standard) το οποίο δημιουργήθηκε για την κωδικοποίηση περιγραφικών, διαχειριστικών και δομικών μεταδομέων που σχετίζονται και περιγράφουν τα Εκπαιδευτικά Αντικείμενα, Αντικείμενα Μαθημάτων και Αντικείμενα Αποτελέσματος που διαχειρίζονται οι αποθήκες υλικού. Κάναμε αναφορά στο LOM (Learning Object Metadata) πρότυπο, το οποίο είναι μονότελο δεδομένων που χρησιμοποιείται για να περιγράψει ένα Αντικείμενο. Παρουσιάσαμε το IMS question and test interoperability (IMS QTI) πρότυπο το οποίο επιτυγχάνει την περιγραφή εκπαιδευτικού υλικού που χρησιμοποιείται για την αξιολόγηση γνώσεων και διεξαγωγή ερευνών σε πολλές εκπαιδευτικές και μη περιπτώσεις. Παρουσιάσαμε το IMS DRI πρότυπο το οποίο αποτελεί και τη βάση για το σχεδιασμό των υπηρεσιών ιστού για την διαχείριση των αποθηκών υλικού. Περιγράφαμε την πλατφόρμα Eclipse και την Berkeley DB XML βάση δεδομέων με την οποία αναπτύχθηκαν οι αποθήκες υλικού. Αναφέρθηκαμε στις υπηρεσίες διαδικτύου και στις τεχνολογίες SOAP/WSDL/ UDDI οι οποίες χρησιμοποιούνται για την ανάπτυξή τους.
Κεφάλαιο 2 – Σχετικά τεχνικά πρότυπα, προδιαγραφές και τεχνολογίες

Θα ακολουθήσει κεφάλαιο το οποίο θα περιγράψει την αρχιτεκτονική του LOGOS, την αρχιτεκτονική των αποθηκών υλικού, το είδος και τον τύπο των αντικειμένων που οι αποθήκες υλικού και υπηρεσίες διαδικτύου που υλοποίησαμε θα κληθούν να εξυπηρετήσουν.
Κεφάλαιο 3 – Η αρχιτεκτονική του LOGOS

3.1 Εισαγωγή

Σε αυτό το κεφάλαιο θα περιγράψουμε αρχικά, στην ενότητα 3.2, την ευρύτερη αρχιτεκτονική στην οποία εντάσσεται η παρούσα εργασία. Η αρχιτεκτονική αυτή αναφέρεται στο έργο LOGOS και περιλαμβάνει μεταξύ των άλλων τα εργαλεία και τις αποθέκες υλικού για την υποστήριξη αειφανούς μάθησης.

Στην ενότητα 3.3 θα περιγράψουμε τα είδη των αντικειμένων που διαχειρίζονται οι αποθέκες υλικού. Τα αντικείμενα αυτά είναι Ψηφιακά Αντικείμενα, Εκπαιδευτικά Αντικείμενα, Αντικείμενα Μαθημάτων και Αντικείμενα Αποτίμησης. Παράλληλα θα περιγραφεί ο τρόπος με τον οποίο χρησιμοποιείται το πρότυπο METS προκειμένου να αναπαρασταθούν τα αντικείμενα αυτά. Το μοντέλο METS χρησιμοποιείται προκειμένου να καθιστούν υλοποιήσιμοι οι εξής στόχοι:

- Ολοκληρωμένη περιγραφή των αντικειμένων κάθε επιπέδου κάνοντας χρήση κατάλληλων σχημάτων μεταδεδομένων. Τα σχήματα αυτά αποτυπώνουν τις διάφορες 'προοπτικές' των αντικειμένων.

- Αναφορές σε αντικείμενα χαμηλότερου επιπέδου, χωρίς την επανάληψη στο τρέχον επίπεδο της πληροφορίας που περιέχουν. Σε γενικές γραμμές, αντικείμενα συγκεκριμένου επιπέδου πρέπει να είναι σε θέση να αναφέρονται στα αντικείμενα των επιπέδων που βρίσκονται χαμηλότερα. Με τον τρόπο αυτό υποστηρίζεται η επαναχρησιμοποίηση αντικειμένων χαμηλότερου επιπέδου από αντικείμενα που βρίσκονται σε ανώτερο επίπεδο.
Πέραν αυτού, η ευέλικτη αναπαράσταση των αντικειμένων επιτρέπει την run-time κατάλληλη προσαρμογή / μεταχειρισμό των αντικειμένων ούτως ώστε να υποστηρίζεται cross-media μετάδοση εκπαιδευτικών εμπειριών.

Τέλος στην ενότητα 3.4 θα αναφερθούμε στα τμήματα της αρχιτεκτονικής του LOGOS τα οποία σχεδιάστηκαν και υλοποιήθηκαν στην παρούσα διπλωματική εργασία.

3.2 Αρχιτεκτονική της πλατφόρμας LOGOS

Η αρχιτεκτονική της πλατφόρμας LOGOS απεικονίζεται στην εικόνα 3-1. Η πλατφόρμα LOGOS περιλαμβάνει [12]:

- Κατάλληλες αποθήκες υλικού και υπηρεσιών ιστού για την διαχείριση των διαφόρων τύπων αντικειμένων:
 - Τον Εξουσιοδοτητή Πρωτογενών Αντικειμένων (Media Server) ο οποίος διαχειρίζεται Πρωτογενή Αντικείμενα (Media Objects) τα οποία προέρχονται από εξωτερικά αρχεία
 - Την Αποθήκη Ψηφιακών Αντικειμένων η οποία διαχειρίζεται Ψηφιακά Αντικείμενα (digital objects) δημιουργημένα με βάση τα Media Objects. Τα ψηφιακά αντικείμενα αντιστοιχούν στα Media Objects ή τμήματα αυτών, συνδυασμένα με σημασιολογικά μεταδεδομένα και μεταδεδομένα διαχείρισης
 - Την Αποθήκη Εκπαιδευτικών Αντικειμένων η οποία διαχειρίζεται Εκπαιδευτικά Αντικείμενα (learning Objects) τα οποία είναι δημιουργημένα με βάση τα Ψηφιακά Αντικείμενα εμπλουτισμένα με εκπαιδευτικά μεταδεδομένα
 - Την Αποθήκη Αντικειμένων Αποτίμησης η οποία συλλέγει στο ίδιο επίπεδο με την αποθήκη υλικού Εκπαιδευτικών Αντικειμένων και διαχειρίζεται Αντικείμενα Αποτίμησης (assessment Objects) τα οποία είναι εμπλουτισμένα με εκπαιδευτικά μεταδεδομένα. Τα Αντικείμενα Αποτίμησης χρησιμοποιούνται προκειμένου να εκτιμηθεί η ικανοποίηση συγκεκριμένων εκπαιδευτικών στόχων. Τα αντικείμενα αποτίμησης μπορεί να
Κεφάλαιο 3 – Η αρχιτεκτονική LOGOS

είναι είτε απλές ερωτήσεις (Assessment Items) είτε σύνθετα ερωτηματολόγια (Assessment Tests) αποτελούμενα από απλές ερωτήσεις.

- Την Αποθήκη Υλικού Αντικειμένων Μαθημάτων η οποία διαχειρίζεται Αντικείμενα Μαθημάτων (courseware Objects) τα οποία εκμετάλλευονται τα βασικά Εκπαιδευτικά Αντικείμενα και ανταποκρίνονται σε εμπειρίες μάθησης οι οποίες μπορεί να μεταφερθούν με την χρήση διαφόρων καναλών διανομής.

- Το ενδιάμεσο Επίπεδο Δυναμικής Κατασκευής Μαθημάτων (Dynamic Courseware Creation Middleware) το οποίο βρίσκεται σε επίπεδο ενδιάμεσο του επιπέδου της Αποθήκης Υλικού Εκπαιδευτικών Αντικειμένων και του επιπέδου της Αποθήκης Υλικού Αντικειμένων Μαθημάτων και χρησιμοποιείται για την αυτόματη δημιουργία προσωποποιημένων Αντικειμένων Μαθημάτων (personalized courseware). Τα αντικείμενα δημιουργούνται βασισμένα σε συγκεκριμένες εκπαιδευτικές ανάγκες εκφρασμένες στο προφίλ των χρηστών και χρησιμοποιούνται κατάλληλα εκπαιδευτικά σενάρια (Learning Designs). Την υπηρεσία μπορούν να την εκμεταλλεύονται οι μαθητές για τη λήψη προσωποποιημένων εκπαιδευτικών εμπειριών και οι συντάκτες μαθημάτων μπορούν να τη χρησιμοποιήσουν για την αρχική κατασκευή εκπαιδευτικών εμπειριών για μια ομάδα μαθητών που περιγράφεται με ένα “συλλογικό” προφίλ (stereotype). Την αρχική εκτυπωτική εμπειρία μπορούν στη συνέχεια να τροποποιήσουν κατά βούληση.

- Περιβάλλον συγγραφής (Authoring Studio) το οποίο αποτελείται από εργαλεία για την δημιουργία και σύνταξη των παραπάνω τύπων αντικειμένων όπως επίσης για την δημιουργία αφηρημένων σεναρίων εκπαίδευσης. Τα σενάρια εκπαίδευσης επιτρέπουν την υποστήριξη δυναμικής δημιουργίας προσωποποιημένων εκπαιδευτικών εμπειριών και την δημιουργία των αντικειμένων μαθημάτων (courseware objects) σε διαφορετικές πλατφόρμες μετάδοσης. Τα εργαλεία του Authoring Studio είναι τα ακόλουθα:

- Διαχειριστής Οντολογιών (Ontology Management Tool): χρησιμοποιείται για τη δημιουργία και τη διαχείριση πολύγλωσσων οντολογικών πεδίων με γραφικές και φιλικές προς το χρήστη διαπραγμάτευσης που
μπορούν να χρησιμοποιηθούν αποτελεσματικά από γνώστες ενός πεδίου (διαχειριστές γνώσης). Το εργαλείο μπορεί να δημιουργηθεί και να διαχειριστεί κανόνες γνώσης συμπερασμάτων, περιορισμούς και φόρμες ώστε να επιταχύνουν τη σημασιολογική περιγραφή του περιεχομένου.

ο Εργαλείο Πειγραφής Περιεχομένου (Content Description Tool): Τμηματοποιεί και προσθέτει μεταδεδομένα σε Ψηφιακά Αντικείμενα. Επίσης παρέχει πολύγλωσση υποστήριξη. Ενσωματώνει κατάλληλο εργαλείο αναζήτησης για να εκτελεί αναζήτησες σε υπάρχοντα Ψηφιακά Αντικείμενα και επιλέγει τα απαραίτητα για επιπρόσθετες διαδικασίες σχολιασμού. Επίσης χρησιμοποιεί φόρμες για σημασιολογική ευρετηριασμό που έχουν δημιουργηθεί από το Ontology Management Tool.

ο Εργαλείο Πειγραφής Εκπαιδευτικών Αντικειμένων (Description Tool for Learning Objects): Χρησιμοποιείται για την επιλογή και την οργάνωση των σχετικών Ψηφιακών Αντικειμένων για δεδομένη παιδαγωγική χρήση. Παρέχει τα μέσα για τη δημιουργία εκπαιδευτικών μεταδεδομένων ώστε να δημιουργηθούν Αντικείμενα Μάθησης που μπορούν να εξαναχρησιμοποιηθούν. Αυτά τα επαναχρησιμοποιήσιμα Αντικείμενα Μάθησης χρησιμοποιούνται στη συνέχεια για δημιουργία αντικειμένων μαθημάτων ή σαν στοιχεία διευκόλυνσης των διαδικασιών μάθησης (π.χ. υλικό που ένας δάσκαλος μπορεί να χρησιμοποιήσει στην τάξη).

ο Συντάκτης Εκπαιδευτικών Σχεδίων (Learning Designs Editor): Χρησιμοποιείται για να δημιουργήσει σχέδια μάθησης (learning designs - αφηρημένες σενάρια μάθησης) τα οποία χρησιμοποιούνται για την αυτόματη δημιουργία προσωποποιημένων εμπειριών μάθησης που μπορεί να χρησιμοποιηθούν είτε από τους μαθητές είτε από ειδικούς στην δημιουργία αντικειμένων μαθημάτων.

ο Συντάκτης Αντικειμένων Μαθημάτων (Courseware Objects Editor): Χρησιμοποιείται για να δημιουργήσει στατικά αντικείμενα μαθημάτων, συμπεριλαμβανομένων και των ερωτηματολογιών αξιολόγησης των μαθητευόμενων. Χρησιμοποιεί το Publishing Tool για να παρέχει μια προεπισκόπηση των κατασκευασμένων Αντικειμένων Μαθημάτων. Επίσης χρησιμοποιεί τις υπηρεσίες αναζήτησης του Learning Objects Repository για
να διεξάχει αναζήτηση για επαναχρησιμοποιούμενα Αντικείμενα Μάθησης που μπορεί να χρησιμοποιηθούν στα Αντικείμενα Μαθημάτων. Επίσης εκμεταλλεύεται τη λειτουργικότητα της δυναμικής δημιουργίας αντικειμένων μαθημάτων του Dynamic Courseware Creation Middleware των αποθηκών υλικού του LOGOS ούτως ώστε να διευκολύνει τη δημιουργία των Αντικειμένων Μαθημάτων μέσω περαιτέρω επεξεργασίας των δυναμικώς δημιουργούμενων Αντικειμένων Μαθημάτων.

- Εργαλείο Δημοσίευσης (Publishing Tool): Χρησιμοποιείται για να δημοσιεύει ευρετηριασμένα, σχολιασμένα, μεταφρασμένα και βελτιωμένα οπτικοακουστικά κομμάτια στην κατάλληλη μορφή για να χρησιμοποιηθούν από τους μαθητευόμενους χρησιμοποιώντας διαφορετικές συσκευές όπως PCs, κινητά τηλέφωνα και συσκευές αλληλεπιδραστικής τηλεόρασης.

- Ένα Σύστημα Διαχείρισης Μάθησης (Learning Management System) το οποίο περιέχει κατάλληλα τμήματα για την μετάδοση των αντικειμένων μαθημάτων στους μαθητές παρέχοντας λειτουργικότητα ώστε να προσαρμοστεί το εκπαιδευτικό υλικό στις ανάγκες κάθε χρήστη. Επίσης περιλαμβάνεται λειτουργικότητα που αφορά στην παρακολούθηση της προόδου ενός χρήστη και στην ανανέωση της σχετιζόμενης με τον χρήστη πληροφορίας όπως υπάρχει στα προφίλ του.
Κεφάλαιο 3 – Η αρχιτεκτονική LOGOS

Εικόνα 3-1: αρχιτεκτονική πλατφόρμας LOGOS[12]

Στην εικόνα 3-1 απεικονίζεται η αρχιτεκτονική της πλατφόρμας LOGOS εστιασμένη κυρίως στα στοιχεία που σχετίζονται με τις αποθήκες υλικού και Authoring Studio του LOGOS και στον τρόπο με τον οποίο αυτά επικοινωνούν ώστε να παραχθεί η απαραίτητη λειτουργικότητα για την δημιουργία του cross-media εκπαιδευτικού υλικού. Επίσης αναπαριστώνται οι διάφοροι ρόλοι των χρηστών.
3.2.1 Αποθήκες υλικού της πλατφόρμας LOGOS

Προκειμένου να μπορέσει να διαχειριστεί όλους τους τύπους των αντικειμένων που χρησιμοποιούνται για τη βαθμιαία σύνθεση των Αντικειμένων Μαθημάτων ξεκινώντας από τα Ψηφιακά Αντικείμενα, η πλατφόρμα του LOGOS περιλαμβάνει έναν Media Server και τις κατάλληλες αποθήκες υλικού που προσφέρουν όλη την απαραίτητη λειτουργικότητα για την αποθήκευση, αναζήτηση και ανάκτησή τους. Τα Ψηφιακά Αντικείμενα αποθηκεύονται και διαχειρίζονται από τον Media Server. Τους άλλους τύπους αντικειμένων (Ψηφιακά, Εκπαιδευτικά, Αποτίμησης, και Αντικείμενα Μαθημάτων) διαχειρίζονται οι κατάλληλες αποθήκες υλικού του LOGOS που είναι προσβάσιμες από τα εργαλεία του LOGOS Authoring Studio:

Οι αποθήκες υλικού του LOGOS είναι[12]:

• Αποθήκη υλικού Ψηφιακών Αντικειμένων (Digital Objects Repository) η οποία διαχειρίζεται Ψηφιακά Αντικείμενα (DOs), τα οποία είναι σχολιασμένα και ευρετηριασμένα πρωτογενή Αντικείμενα ή τμήματα των πρωτογενών Αντικειμένων. Τα Ψηφιακά Αντικείμενα χρησιμοποιούνται για να δημιουργήσουν μαθησιακό υλικό. Τα Ψηφιακά Αντικείμενα εμπλουτίζονται με πληροφορίες διαχείρισης και σημασιολογικές πληροφορίες ώστε να είναι διαθέσιμα να χρησιμοποιηθούν για τη δημιουργία του μαθησιακού υλικού.

• Αποθήκη υλικού Εκπαιδευτικών Αντικειμένων (Learning Objects Repository) η οποία χειρίζεται Εκπαιδευτικά Αντικείμενα (LOs), τα οποία είναι ανεξάρτητες και αυτόνομες μονάδες μαθησιακού περιεχομένου οι οποίες διατίθενται να ξαναχρησιμοποιηθούν σε πολλαπλά εκπαιδευτικά περιβάλλοντα. Είναι συλλογές Ψηφιακών Αντικειμένων (DOs) εμπλουτισμένων με εκπαιδευτικά μεταδεδομένα.

• Αποθήκη υλικού Αντικειμένων Αποτίμησης (Assessment Object Repository) η οποία ανήκει στο ίδιο επίπεδο με το Learning Object Repository και διαχειρίζεται Αντικείμενα Αποτίμησης (AOS) εμπλουτισμένα με εκπαιδευτικά μεταδεδομένα. Τα Αντικείμενα Αποτίμησης χρησιμοποιούνται για να αξιολογούν την ικανοποίηση συγκεκριμένων μαθησιακών σκοπών. Τα αντικείμενα αποτίμησης μπορεί να είναι απλές ερωτήσεις (Assessment Items) ή περίπλοκα ερωτηματολόγια (Assessment Tests) που αποτελούνται από απλές ερωτήσεις.
• Αποθήκη υλικού Αντικειμένων Μαθημάτων (Courseware Objects Repository) η οποία διαχειρίζεται Αντικείμενα Μαθημάτων (COs), τα οποία είναι δομημένα αντικείμενα που μπορούν να χρησιμοποιηθούν για να παρέχουν έξυπνες πληροφορίες (προσωποποιημένες) ή συνεργατικές εμπειρίες μάθησης σε επισήμες και μη, μαθησιακές ιδιότητες. Είναι υπόλοιπο από Εκπαιδευτικά Αντικείμενα που περιλαμβάνουν επιπτώσεις εκπαιδευτικά μεταδοτικά και πληθυσμιακά διαδοχικά και καθοδηγητικά μεταδοτικά.

Η παρούσα διπλωματική εργασία, όπως αναφέρθηκε, εντάσσεται στην ευρύτερη αρχιτεκτονική εργασία.

Στις επόμενες ενότητες θα περιγράψουμε με λεπτομέρεια την δομή των αντικειμένων κάθε επιπέδου και συγκεκριμένα τον τρόπο με τον οποίο τα χρησιμοποιούμε πρότυπα για την αναπαράστασή τους ώστε να επιτρέπει η ευκαιρία διαχείρισης, επανακαταμορφώσης καθώς και η σταδιακή εξέλιξη τους σε υψηλότερα επιπέδη μονάδες ούτως ώστε να γίνουν τμήματα των Αντικειμένων Μαθημάτων.

3.3 Δομή Αντικειμένων και χρήση του METS για την αναπαράσταση των Εκπαιδευτικών Αντικειμένων, Αντικειμένων Μαθημάτων και Αντικειμένων Αποτίμησης

Η ακόλουθη εικόνα παρουσιάζει την σχέση μεταξύ COs, LOs, AOs, DOs και Media Objects τα οποία βρίσκονται αποθηκευμένα στις αντίστοιχες αποθήκες υλικού του LOGOS και στον Media Server.
Κεφάλαιο 3 – Η αρχιτεκτονική LOGOS

Προκειμένου να υποστηρίξουμε την βαθμιαία ανάπτυξη των Αντικειμένων Μαθημάτων ακολουθώντας την εφαρμογή προσέγγιση σύνθεσης αντικειμένων που απεικονίζεται στην

Error! Reference source not found., ένα ευέλικτο μοντέλο είναι αναγκαίο ώστε να επιτευχθεί:

- Ολοκληρωμένη περιγραφή των αντικειμένων κάθε επιπέδου κάνοντας χρήση κατάλληλων σχημάτων μεταδεδομένων. Τα σχήματα αυτά αποτυπώνουν τις διάφορες ‘προοπτικές’ των αντικειμένων.

- Αναφορές σε αντικείμενα χαμηλότερου επιπέδου χωρίς την επανάληψη στο τρέχον επίπεδο της πληροφορίας που αυτά περιέχουν. Σε γενικές γραμμές, αντικείμενα υπερανασκευασμένου επιπέδου πρέπει να είναι σε θέση να αναφέρονται στα αντικείμενα των επιπέδων που βρίσκονται χαμηλότερα. Με τον τρόπο αυτό υποστηρίζεται η επαναχρησιμοποίηση αντικειμένων χαμηλότερου επιπέδου από αντικείμενα που βρίσκονται σε ανώτερο επίπεδο. Πάντα αυτού, η ευέλικτη αναπαράσταση των αντικειμένων επιτρέπει την run-time κατάλληλη προσαρμογή / μεταμορφώση των αντικειμένων ούτως ώστε να υποστηρίζεται cross-media μετάδοση εκπαιδευτικών εμπειριών.
Ένα τέτοιο ευέλικτο μοντέλο ορίζεται στο πλαίσιο διαλειτουργικότητας που περιγράφεται στα ASIDE[15], και στο master της Ξένιας Αράπη[16], το οποίο βασίζεται στο πρότυπο Metadata Encoding and Transmission Standard – METS[9]. Στην εικόνα 3-3 παρουσιάζεται ένα τυπικό METS xml έγγραφο. To structural map (structMap) τμήμα είναι η καρδιά του METS εγγράφου. Παρατηρήσεις της ιεραρχική δομή για το αντικείμενο ψηφιακής βιβλιοθήκης και συνδέει τα στοιχεία της κάθε δομής με τα περιεχόμενα και τα μεταδεδομένα που ανήκουν στά στοιχεία. Κάθε κόμβος της δομής που αναφοριστάται στο structMap τμήμα μπορεί να περιγράφει με κατάλληλη μεταδοτική. Τα μεταδεδομένα αυτά υπάρχουν σε αντικείμενα καθημερινά σε ειδικά τμήματα οι οποίοι είναι σχεδιασμένοι για να περιλαμβάνεται περιγραφικά και διαχειριστικά μεταδεδομένο (dmdSec και amdSec αντίστοιχα) και μπορεί να είναι είτε εσωτερικά είτε εξωτερικά του METS εγγράφου. Πολλά αντικείμενα συγκεκριμένα τμήματα μπορεί να βρίσκονται εντός METS εγγράφου ανάλογα με τις απαιτήσεις της εκάστοτε εφαρμογής. Το τμήμα των διαχειριστικών μεταδεδομένων (amdSec) παρέχει πληροφορίες αναφορικά με τον τρόπο με τον οποίο δημιουργήθηκαν και αποθηκεύτηκαν τα έγγραφα, παρέχει μεταδεδομένα που αναφέρονται στο αρχικό αντικείμενο πηγής από το οποίο προέρχεται το αντικείμενο ψηφιακής βιβλιοθήκης, καθώς και πληροφορίες σχετικές με την προέλευση των αρχείων που περιλαμβάνονται στο αντικείμενο ψηφιακής βιβλιοθήκης (δηλ. σχέση μεταξύ αρχετύπου/παραγωγών αρχείων, πληροφορίες μετασχηματισμού κ.λ.π.). Το αρχείο περιγράφει των κόμβων της δομής περιέχεται στο fileSec τμήμα και γίνεται αναφορά σε αυτό μέσω δεσμών. Τα αρχεία που αναφέρονται στο fileSec μπορεί επίσης να περιγράφονται με περιγραφικά και διαχειριστικά μεταδεδομένα. Αρχεία μπορεί να ομαδοποιούνται σε fileGrp στοιχεία. To Structural Links (structLink) τμήμα του METS επιτρέπει σε δημιουργούς METS εγγράφου να καταγράφουν την ύπαρξη hyperlinks μεταξύ κόμβων στην ιεραρχία που περιγράφεται στο Structural Map. To behavior τμήμα μπορεί να χρησιμοποιηθεί για να συνδέσει εκτελέσιμες συμπεριφορές με περιεχόμενο στο METS αντικείμενο.
Στην εικόνα 3-4 βλέπουμε πως τα χαρακτηριστικά του METS χρησιμοποιούνται προκειμένου να περιγράφουν αντικείμενα στο DO (digital object), CO (courseware object), LO (learning object), ΑΟ (assessment object) επίπεδο.
Κεφάλαιο 3 – Η αρχιτεκτονική LOGOS

Εικόνα 3-4: Περιγραφή Εκπαιδευτικών Αντικειμένων, Αντικειμένων Μαθημάτων, Αντικειμένων Αποτίμησης, Ψηφιακών Αντικειμένων, Προτογενών Αντικειμένων με χρήση του METS[12] και οι σχέσεις μεταξύ τους.

Στις ενότητες που ακολουθούν θα περιγραφεί με λεπτομέρεια η δομή των αντικειμένων εστιάζοντας κυρίως στα LOs, AOs και COs τα οποία παρατίθενται στην παραπάνω εικόνα.

3.3.1 Δομή Ψηφιακών Αντικειμένων

Τα Ψηφιακά Αντικείμενα[12] περιγράφονται με:
- πληροφορίες σημαντικής: το τμήμα των περιγραφικών μεταδεδομένων (dmdSec) του METS χρησιμοποιείται για να ενσωματώσει semantic πληροφορίες εκφρασμένες με CoGXML (δομή αναπαράστασης για conceptual graphs)

- “Διαχειριστικές” πληροφορίες: Το τμήμα amdSec εκφρασμένο σε MPEG7 περιλαμβάνει πληροφορία συγκεκριμένη για κάθε Ψηφιακό Αντικείμενο και πληροφορίες που κληρονομούνται από το επίπεδο των media αντικειμένων.

Το fileSec χρησιμοποιείται για να ‘δείξει’ στο media αντικείμενο, το οποίο βρίσκεται στον Media Server, από το οποίο προέκυψε το τρέχον ψηφιακό αντικείμενο.

3.3.2 Δομή Εκπαιδευτικών Αντικειμένων

Πολλοί ορισμοί έχουν δοθεί για να περιγράψουν ένα Εκπαιδευτικό Αντικείμενο. Το γεγονός αυτό επηρεάζει τον τρόπο που ένα αντικείμενο πρέπει να αναπτυχθεί. Στην παρούσα εργασία οι ακόλουθοι ορισμοί έχουν ληφθεί υπ’ όψιν:

- Dalziel (Dalziel, 2002): “Τα εκπαιδευτικά αντικείμενα είναι σύνολα από ψηφιακά στοιχεία (όπως π.χ. εικόνες, κείμενο, ήχος, ιστοσελίδες, κ.λ.π.) εμπλουτισμένα με μεταδεδομένα, τα οποία ορατοποιούνται σε μια αυτόνομη οντότητα με αυτοτελή μαθησιακή αξία.”

- Polsani’s (Polsani, 2003): “Εκπαιδευτικό αντικείμενο είναι αυτόνομη, ανεξάρτητη μονάδα εκπαιδευτικού περιεχομένου, η οποία είναι προορισμένη να χρησιμοποιείται και να επαναχρησιμοποιείται σε πολλαπλά εκπαιδευτικά περιβάλλοντα.”

Η τυπική σύνθεση ενός Εκπαιδευτικού Αντικειμένου είναι η ταξινόμηση των στοιχείων (arrangement of the elements). Ένα στοιχείο θα μπορούσε να είναι κείμενο, εικόνα, video κ.τ.λ. Προτιμάται είναι το Εκπαιδευτικό Αντικείμενο να αποτελείται από συνδυασμό στοιχείων. Στην παρούσα διπλωματική τα στοιχεία αυτά αντιστοιχούν σε Ψηφιακά Αντικείμενα. Συγκεκριμένα, τα Εκπαιδευτικά Αντικείμενα που χρησιμοποιούμε είναι συλλογές Ψηφιακών Αντικειμένων που συνθέσουν αυτόνομες μονάδες που εκπαιδευτικούς στόχους. Τα Εκπαιδευτικά Αντικείμενα περιγράφονται από το IEEE LOM πρότυπο χρησιμοποιώντας και το dmdSec στοιχείο του METS. Από την στιγμή που το LOM περιλαμβάνει / ενσωματώνει δομές για διαχειριστικές πληροφορίες, δεν γίνεται ξεχωριστή χρήση του amdSec στοιχείου του METS για την αναπαράσταση διαχειριστικών
κεφάλαιο 3 – η αρχιτεκτονική LOGOS

μεταδεδομένων. Το fileSec στοιχείο που αποτελείται από στοιχεία αρχείων (file elements) χρησιμοποιείται για να ‘δείξει’ στα συμπληρωματικά στοιχεία (DOs) του εκπαιδευτικού αντικειμένου μέσω δεικτών.

3.3.3 Το fileSec στοιχείο που αποτελείται από στοιχεία αρχείων (file elements) χρησιμοποιείται για να ‘δείξει’ στα συμπληρωματικά στοιχεία (DOs) του εκπαιδευτικού αντικειμένου μέσω δεικτών.

Το fileSec στοιχείο που αποτελείται από στοιχεία αρχείων (file elements) χρησιμοποιείται για να ‘δείξει’ στα συμπλήρωματικά στοιχεία (DOs) του εκπαιδευτικού αντικειμένου μέσω δεικτών. Τα Αντικείμενα Αποτίμησης μπορεί να είναι είτε απλές ερωτήσεις (Assessment Items) είτε σύνθετα ερωτηματολόγια (Assessment Tests) αποτελούμενα από απλές ερωτήσεις. Η IMS QTI προδιαγραφή χρησιμοποιείται για την αναπαράσταση των απλών ερωτήσεων και σύνθετων ερωτηματολογίων, ενώ το METS χρησιμοποιείται για την ολοκλήρωση των εκπαιδευτικών, διαχειριστικών μεταδεδομένων και QTI περιγραφών σε Αντικείμενα Αποτίμησης. Έτσι ένα Αντικείμενο Αποτίμησης αντιστοιχεί σε METS αναπαράσταση η οποία αποτελείται από εκπαιδευτικά, διαχειριστικά μεταδεδομένα και αναφορές στην αντίστοιχη Item/Test QTI περιγραφή.

Το IMS Question & Test Interoperability[3] πρότυπο περιγράφει ένα μοντέλο δεδομένων για την αναπαράσταση των ερωτήσεων (assessmentItem) και test (assessmentTest). Για το λόγο αυτό η προδιαγραφή επιτρέπει την ανταλλαγή των items/tests και των δεδομένων απόχρησης μεταξύ αρχείων (file elements), item αποθηκών, αρχείων δημιουργίας test, εκπαιδευτικών συστημάτων και συστημάτων διανομής Αντικειμένων Αποτίμησης. Ο διαμοιρασμός / ανταλλαγή των items και tests επιτυγχάνεται με κατάλληλα XML έγγραφα.

Μια απλή ερώτηση (Assessment Item AI) σύμφωνα με την IMS QTI προδιαγραφή είναι το μικρότερο αντικείμενο που μπορεί να χρησιμοποιηθεί για αποτίμηση. Ένα item περιλαμβάνει πληροφορία η οποία παρουσιάζεται σε εκπαιδευτικό και πληροφορία σχετικά με τον τρόπο βαθμολογίας του item. Για να καθοριστεί η βαθμολογία, εκτελούνται διάφοροι κανόνες επεξεργασίας των απαντήσεων του εκπαιδευτικού. Ένα item είναι κάτι περισσότερο από μια ερώτηση και περιλαμβάνει παρουσίαση της ερώτησης και σχετικές οδηγίες, την επεξεργασία στην οποία υπόκεινται οι απαντήσεις που δίνει ο χρήστης ώστε να παραχθεί η τελική βαθμολογία, και πιθανή παρουσία ανάδρασης η οποία περιλαμβάνει λύσεις και υποδείξεις. Σε αυτήν την προδιαγραφή τα items αναπαριστώνται από την assessmentItem κλάση και ο όρος assessment item χρησιμοποιείται εναλλακτικά του item.
Κεφάλαιο 3 – Η αρχιτεκτονική LOGOS

Ένα σύνθετο ερωτηματολόγιο (Assessment Test AT) σύμφωνα με την προδιαγραφή IMS QTI είναι μια οργανωμένη συλλογή από items τα οποία χρησιμοποιούνται για να καθορίσουν τις τιμές των αποτελεσμάτων (π.χ. επίπεδο δεξιότητας) όταν εκτιμάται η απόδοση ενός εκπαιδευόμενου σε κάποιο πεδίο. Ένα σύνθετο ερωτηματολόγιο περιέχει όλες τις απαραίτητες πληροφορίες για να καταστεί δυνατή η διαδοχή των items και ο υπολογισμός αποτελεσμάτων, όπως για παράδειγμα το τελικό σκορ του test.

3.3.4 Δομή των Αντικειμένων Μάθησης

Τα Αντικείμενα Μάθησης[12] είναι δομές Εκπαιδευτικών Αντικειμένων και Αντικειμένων Αποτίμησης και παρουσιάζονται με LOM μεταδοθέν μέσω του dmdSec του METS, όπως υποδεικνύεται στην εικόνα 3-4.

Το structMap τμήμα χρησιμοποιείται για να εκφραστεί την δομή του Αντικειμένου Μαθήματος η οποία αποτελείται από λειτουργίες activities (εισαγωγής με div) τα οποία λαμβάνουν χώρα κατά την διάρκεια της εκπαιδευτικής διαδικασίας χρησιμοποιώντας πολλαπλές συσκευές. Κάθε activity (div) 'δείχνει' σε συγκεκριμένο channel-specifc path (επίσης εισαγωγής με div). Channel-specific paths αποτελούνται από leaf activities (περαιτέρω div's) από τα οποία λαμβάνουν χώρα Channel paths θεωρούνται ως εναλλακτική μορφή εκπαιδευτικού περιεχομένου υποστηρίζοντας το αντίστοιχο activity και είναι προορισμένο για συνεχισμένη συλλογή συσκευών.

Το στοιχείο file χρησιμοποιείται για την αναφορά μέσω δεικτών σε Εκπαιδευτικά Αντικείμενα τα οποία βρίσκονται αποθηκευμένα στην ηπείρηση υλικού Εκπαιδευτικών Αντικειμένων. Ένα Αντικείμενο Μαθήματος συνολικά και τα Εκπαιδευτικά Αντικείμενα και Αντικείμενα Αποτίμησης φιλοσοφούν ότι μπορούν να παρατέθουν με την χρήση dmdSec στοιχείων, σε πληροφορίες παρουσίασης οι οποίες λαμβάνουν υπόψη προοπτικές να μεταχειμάτισουν κατάλληλα το εκπαιδευτικό υλικό για να απεικονιστεί στις συσκευές προορισμού.

3.3.5 Καταστάσεις Αντικειμένων

Ένα Αντικείμενο Εκπαιδευτικό, Αποτίμησης ή Μαθήματος μπορεί να βρίσκεται σε μία από τις δύο διακριτές καταστάσεις, οι οποίες ονομάζονται Editing και Rendered κατάσταση.
Τα Rendered αντικείμενα είναι διαθέσιμα μόνο για διάβασμα και μπορούν να χρησιμοποιηθούν για την ανάπτυξη υψηλότερου επιπέδου αντικειμένων. Αντίθετα τα Editing αντικείμενα δεν βρίσκονται σε τελική μορφή και μπορούν να ανακτηθούν όστα να υποστούν επεξεργασία. Η διάκριση των δυο καταστάσεων χρήζει σκόπιμη ώστε να αποφευχθεί περιπλοκότητα στην ανάπτυξη υψηλότερου επιπέδου αντικειμένων από αντικείμενα χαμηλότερου επιπέδου. Σε περίπτωση για παράδειγμα, που κάποιο αντικείμενο χαμηλότερου επιπέδου είχε υποστεί μεταβολή, δεν θα υπήρχε εγγύηση σχετικά με την ποιότητα και συνέπεια των αντικειμένων υψηλότερου επιπέδου.

Οι καταστάσεις editing/rendered αναπαριστώνται από τις τιμές draft/final αντίστοιχα. Η καταχώρηση των τιμών draft/final και κατ’ επέκταση ο καθορισμός της κατάστασης του αντικειμένου, γίνεται στο LOM στοιχείο lifeCycle/status/value.

3.4 Το τμήμα της αρχιτεκτονικής του LOGOS που υλοποιήθηκε στην παρούσα διπλωματική εργασία

Όπως έχει ήδη αναφερθεί η παρούσα διπλωματική εργασία εντάσσεται στην ευρύτερη πλατφόρμα του έργου LOGOS και σκοπό είχε να σχεδιάσει και να αναπτύξει το Ενσωματωμένο Σύστημα Αποθηκών Εκπαιδευτικού Υλικού το οποίο διαχειρίζεται Εκπαιδευτικά Αντικείμενα, Αντικείμενα Αποτίμησης, και Αντικείμενα Μαθημάτων, όπως αυτά παρουσιάστηκαν στην προηγούμενη ενότητα.

Ειδικότερα, στα πλαίσια της παρούσας εργασίας, σχεδιάστηκε με εναίο τρόπο, ακολουθώντας τις συστάσεις της προειδοποιητικής IMS DRI οι υπηρεσίες της Αποθήκης υλικού Εκπαιδευτικών Αντικειμένων, της Αποθήκης υλικού Αντικειμένων Αποτίμησης και της Αποθήκης υλικού Αντικειμένων Μαθημάτων και καθορίστηκε η υποδομή αποθήκευσης των αρχείων που αναπαριστούν τους αντιστοιχους τύπους αντικειμένων. Στην Berkeley DB XML. Στο κεφάλαιο 4 που ακολουθεί παρουσιάζεται η σχετική αρχιτεκτονική που αναπτύχθηκε ενώ στο κεφάλαιο 6 αναλύονται μία προς μία οι υλοποιήθεις υπηρεσίες.

Στο κεφάλαιο 5 παρουσιάζομε τη μορφή και τη δομή των φίλτρων αναζήτησης τα οποία προσφέρουν ένα εναίο και συστηματικό τρόπο για την αναζήτηση όλων των τύπων αντικειμένων του Ενσωματωμένου Συστήματος Αποθηκών Εκπαιδευτικού Υλικού και έχουν βασιστεί στο μοντέλο εκπαιδευτικών μεταδεδομένων LOM. Η δομή των φίλτρων παρακάτω ακορεβίως η ίδια σε φόρουν εκπαιδευτικά Αντικείμενα, σετ για Αντικείμενα Αποτίμησης, σετ για Αντικείμενα Μαθημάτων. Πέραν των ανωτέρω, θεωρήθηκε απαραίτητη η ανάπτυξη
κεφάλαιο 3 – Η αρχιτεκτονική LOGOS

ενός γραφικού εργαλείου μέσω του οποίου δημιουργούμε, επεξεργαζόμαστε, αποθηκεύουμε και εκτελούμε φίλτρα αναζήτησης το οποίο παρουσιάζεται στο 7ο κεφάλαιο.

3.5 Περίληψη

Στο κεφάλαιο αυτό δώσαμε μια γενική περιγραφή της ευρύτερης αρχιτεκτονικής στην οποία εντάσσεται η παρούσα διπλωματική εργασία. Αναλύσαμε τη δομή των αντικειμένων που ορίζονται στο LOGOS καθώς και τον τρόπο αναπαράστασής τους χρησιμοποιώντας το μοντέλο METS. Τα αντικείμενα αυτά διαιρούνται σε Ψηφιακά Αντικείμενα, Εκπαιδευτικά Αντικείμενα, Αντικείμενα Μαθημάτων και Αντικείμενα Αποτίμησης. Τέλος αναφέρθηκαμε στα τμήματα της αρχιτεκτονικής του LOGOS τα οποία σχεδιάστηκαν και υλοποιήθηκαν στην παρούσα εργασία. Θα ακολουθήσει κεφάλαιο στο οποίο θα περιγράφουμε την αρχιτεκτονική των αποθηκών υλικού που αναπτύχθηκαν, δίνοντας μια πρώτη εικόνα των υπηρεσιών διαδικτύου και της διασύνδεσής τους με τις αποθήκες υλικού.
Κεφάλαιο 4 – Αρχιτεκτονική Αποθηκών Υλικού Αντικειμένων Μαθημάτων, Εκπαιδευτικών Αντικειμένων και Αντικειμένων Αποτίμησης

4.1 Εισαγωγή

Στο κεφάλαιο αυτό θα περιγράψουμε την αρχιτεκτονική των αποθηκών υλικού που υλοποιήσαμε προκειμένου να διαχειριστούμε τα Εκπαιδευτικά Αντικείμενα, τα Αντικείμενα Μαθημάτων και Αντικείμενα Αποτίμησης. Παράλληλα, θα δοθεί μια πρώτη εικόνα των υπηρεσιών ιστού που υλοποιήσαμε προκειμένου να υποστηρίξουμε αρχιτεκτονική πρόσβαση στις αποθήκες αυτές. Συγκεκριμένα, στην ενότητα 4.2 θα παρουσιάσουμε την αρχιτεκτονική των αποθηκών υλικού των Εκπαιδευτικών Αντικειμένων και Αντικειμένων Μαθημάτων. Επίσης, θα παρουσιάσουμε την αρχιτεκτονική των αποθηκών που υλοποιήθηκαν προκειμένου να υποστηρίξουμε την δημιουργία “συναγερμών” (λεπτομέρειες θα ακολουθήσουν στην ενότητα 4.2.1 και στο κεφάλαιο 6) για τα Αντικείμενα Μαθημάτων και Εκπαιδευτικά Αντικείμενα. Τελικώς, στην ενότητα 4.3 θα παρουσιάσουμε την αρχιτεκτονική της αποθήκης υλικού των Αντικειμένων Αποτίμησης.

Πριν προχωρήσουμε με την περιγραφή της αρχιτεκτονικής των αποθηκών υλικού να επισημάνουμε ότι οι υπηρεσίες διαδικτύου έχουν διακριθεί στις εξής κατηγορίες:

- search (αφορά υπηρεσίες αναζήτησης)
- submit/store (αφορά υπηρεσίες εισαγωγής, διαγραφής, ενημέρωσης αντικειμένων)
- request/deliver (αφορά υπηρεσίες ανάκτησης αντικειμένων ή τμημάτων τους)
- alert/expose (αφορά στις υπηρεσίες που διαχειρίζονται συναγερμούς - alerts)

Η κατηγοριοποίηση αυτή ακολουθεί τις συστάσεις της προδιαγραφής IMS DRI[10].
4.2 Αρχιτεκτονική αποθηκών υλικού Εκπαιδευτικών Αντικειμένων και Αντικειμένων Μαθημάτων

Εκκινώντας, να σημειώσουμε ότι οι αποθήκες υλικού Αντικειμένων Μαθημάτων και Εκπαιδευτικών Αντικειμένων απολογούνται την ίδια αρχιτεκτονική. Για το λόγο αυτό οι περιγραφές, παρατηρήσεις και σχόλια που γίνονται στην παράγραφο αυτή θα αφορούν και στις δύο αποθήκες.

Στην αρχιτεκτονική που παραθέτουμε διαχρίσουμε τρία επίπεδα. Τα επίπεδα αποθήκευσης, εφαρμογών και υπηρεσιών. Στο επίπεδο αποθήκευσης έχουν αναπτυχθεί δύο συλλογές της Berkeley DB XML στις οποίες αποθηκεύονται Αντικείμενα Μαθημάτων και Εκπαιδευτικά Αντικείμενα (μία συλλογή για τα Εκπαιδευτικά και μία για τα Αντικείμενα Μαθημάτων).

Σχετικά με τα επίπεδα εφαρμογών και υπηρεσιών διαχρίσουμε τα εξής:

- Στην κατηγορία υπηρεσιών search εντάσσουμε τις εφαρμογές που αφορούν αναζήτηση αντικειμένων (Εκπαιδευτικών Αντικειμένων και Αντικειμένων Μαθημάτων) τα οποία υποστηρίζουν κάποιες προδιαγραφές. Όπως θα εξηγήσουμε στο κεφάλαιο 5,
ήχουμε αναπτύξει φίλτρα δίττημας (Boolean) και ασαφούς (Fuzzy) λογικής με την χρήση των οποίων μπορεί ο χρήστης να ανακτήσει αντικείμενα βάζοντας συγκεκριμένους παραγωγικούς. Συγκεκριμένα, έχουμε δημιουργήσει φίλτρα δίττημας λογικής τα οποία μας βοηθούν να ανακτήσουμε αντικείμενα των οποίων τα LOM μεταβιβαστικά κανονισμούς συγκεκριμένες τιμές που δίνονται από το φίλτρο. Στα φίλτρα ασαφούς λογικής δίνονται βάρη στους όρους (οι οποίοι αντιστοιχούν σε LOM μεταβιβαστικά) μπορούμε να ανακτήσουμε όλα τα αντικείμενα με συγκεκριμένη κατάταξη υποδεικνύοντας σχετική συσχέτιση των LOM μεταβιβαστικών των αντικειμένων με τους όρους που δίνονται στο φίλτρο.

Οι υπηρεσίες search αφορούν στην λήψη φίλτρου (Boolean ή Fuzzy), την μετάφρασή του σε XQuery επαράτημα (χρησιμοποιώντας αλγόριθμο υλοποιημένο σε XQuery) και την εφαρμογή του επαράτηματος στην αποθήκη υλικού των εκπαιδευτικών αντικειμένων ή αντικειμένων μαθημάτων. Το αποτέλεσμα της εκτέλεσης των υπηρεσιών διαδικτύου της κατηγορίας αυτής είναι τα αναγνωριστικά ids των αντικειμένων που επαναπροσθέτουν στο Boolean φίλτρο στην περίπτωση που έχει γίνει επιλογή αναζήτησης με βάσις κάποιο Boolean φίλτρο και τα ids, ranks όλων των αντικειμένων στην περίπτωση που έχει επιλεχθεί αναζήτηση με βάση κάποιο Fuzzy φίλτρο.

- Στην κατηγορία υπηρεσιών submit/store διακρίνουμε τις εφαρμογές που αφορούν εισαγωγή νέου αντικειμένου στην αποθήκη υλικού, την διαχείριση, τροποποίηση ή αντιγραφή ήδη υπάρχοντος αντικειμένου. Στην περίπτωση εισαγωγής νέου αντικειμένου στην αποθήκη υλικού, ο χρήστης θα μπορεί αν το επιθυμεί να ελέγξει αν το αντικείμενο που θα εισάγει είναι έγινε (καλώντας το service validate). Στην περίπτωση διαχείρισης, αντιγραφής ή επεξεργασίας αντικειμένου ήδη υπάρχει στην βάση, γίνεται έλεγχος της κατάστασης του αντικειμένου (υπάρχει LOM μεταβιβαστικό του οποίου η τιμή υποδεικνύει την κατάσταση αντικειμένου) και ανάλογα το αίτημα του χρήστη εξυπηρετείται ή απορρίπτεται. Στον χρήστη σε κάθε περίπτωση επιστρέφεται μήνυμα με το οποίο ενημερώνεται για την ακριβή έκβαση του αίτημάτος που υπέβαλε.

- Στην κατηγορία υπηρεσιών request/deliver, στην οποία ανήκουν εφαρμογές που αφορούν στην ανάκτηση μέρους ή ολόκληρου του αντικειμένου. Ο χρήστης λαμβάνει το αποτέλεσμα του αιτήματος ή μήνυμα με το οποίο ενημερώνεται για αποτυχημένη
Τέλος, θα πρέπει να αναφέρουμε στην υλοποίηση elέγχου ταυτόχρονης πρόσβασης (concurrency control). Συγκεκριμένα υπάρχει μηχανισμός ο οποίος λαμβάνει χώρα κατά την διάρκεια της υπηρεσίας ενημέρωσης αντικειμένου (update_LO / update_CO) και ενημερώνει τον χρήστη που αποτελείται ότι ανακτήσεις αντικειμένο του οποίου δεν έχει την ευκολία του τελευταίου στιγμιότυπου. Για παράδειγμα, ένας χρήστης, έστω Α, ανακτά από την αποθήκη υλικού το αντικείμενο x. Είναι ο ανακτήσεις από την διάρκεια του χρήστης Α επεξεργάζεται το αντικείμενο x και το αποθηκεύεται στην αποθήκη υλικού. Η παραπάνω διαδικασία έχει ως συνέπεια την αλληλεξάρτηση μεταξύ των αντικειμένων μαθημάτων και εκπαιδευτικών αντικειμένων, αποτελείται.

Προσπάθεια ανάκτησης δεδομένων από την αποθήκη υλικού. Θα πρέπει να προσέθεσαμε ότι μέσω των υπηρεσιών της κατηγορίας αυτής γίνεται εμφανής η αλληλεξάρτηση μεταξύ των αντικειμένων μαθημάτων και εκπαιδευτικών αντικειμένων. Ανακτώντας συγκεκριμένα τμήματα των αντικειμένων μαθημάτων μπορούμε να δούμε από ποια εκπαιδευτικά αντικείμενα της αποθήκης υλικού εκπαιδευτικών αντικειμένων, αποτελείται.

Ο παραπάνω μηχανισμός συλλογίζει την τεχνική του “αισιόδοξου elέγχου ταυτόχρονης πρόσβασης” (optimistic concurrency control) και έχει μικροποτική απόδοση όταν οι περιπτώσεις διενέξεων (update conflicts) δεν εμφανίζονται συχνά, κάτι που ισχύει στην δική μας περίπτωση.
4.2.1 Αρχιτεκτονική αποθηκών υλικού για συναγερμούς που αφορούν στα Αντικείμενα Μαθημάτων και Εκπαιδευτικά Αντικείμενα

Σε ότι αφορά τις αποθήκες υλικού των αντικειμένων μαθημάτων και εκπαιδευτικών αντικειμένων, έχουμε υλοποιήσει λειτουργικότητα η οποία επιτρέπει στον χρήστη την δημιουργία συναγερμών (alerts). Οι συναγερμοί, οι οποίοι θα αναλυθούν λεπτομερέστερα στο 6ο κεφάλαιο, παρέχουν λειτουργικότητα για την ενημέρωση ενδιαφερόμενων χρηστών σχετικά με αλλαγές στο περιεχόμενο των αποθηκών υλικού. Κάθε φορά που στις αποθήκες υλικού αποθηκεύονται έγγραφα είτε τροποποιούνται υπάρχοντα έγγραφα ώστε να παρισταμένουν μεταδεδομένα που ανακοινώνουν κάποιες παραμέτρους που έχει θέσει ο χρήστης (αυτές οι παράμετροι προσδιορίζονται από Boolean φίλτρο που περιέχει ο συναγερμός), τότε ο χρήστης αυτός καλώντας συγκεκριμένες υπηρεσίες διαδικτύου μπορεί να ενημερωθεί για τις αλλαγές στις αποθήκες υλικού. Να σημειωθεί ότι έχουμε υλοποιήσει δύο συλλογές (containers) για την αποθήκευση συναγερμών. Ο ένας container αφορά στην αποθήκευση συναγερμών που εξετάζουν την αποθήκη υλικού αντικειμένων μαθημάτων και ο άλλος container αφορά συναγερμούς που εξετάζουν την αποθήκη υλικού εκπαιδευτικών αντικειμένων.

Για λόγους καλύτερης παρουσίασης και κατανόησης των υπηρεσιών της κατηγορίας alert/expose θα κάνουμε μια υπέρβαση ταξινόμησης τις υπηρεσίες σε submit/store, search και request/retrieve κατηγορίες.
Κεφάλαιο 4 – Αρχιτεκτονική Αποθήκης Υλικού Αντικειμένων Μαθημάτων, Εκπαιδευτικών Αντικειμένων και Αντικειμένων Αποτίμησης

- **submit/store** κατηγορία: περιλαμβάνει υπηρεσίες δημιουργίας, διαχείρισης και επαναχρησιμοποίησης συναγερμού. Η δημιουργία συναγερμού περιλαμβάνει την λήψη Boolean ψήφου, identifier για να υπάρχει διάκριση μεταξύ χρηστών, και σχολίων. Η επαναχρησιμοποίηση των συναγερμών διευκολύνει χρήστες να χρησιμοποιούν συναγερμούς που τους υπονοούν χωρίς να χρειάζεται να τα ξαναδημιουργήσουν. Η επαναχρησιμοποίηση και διαχείριση κάποιου συναγερμού εξετάζει τον identifier του χρήστη για να ελέγξουμε αν ο χρήστης ήδη χρησιμοποιεί τον συναγερμό και στην δεύτερη να μην επιτρέψουμε την διαγραφή χωρίς να τον αντικαταστήσει. Όταν ο συναγερμός διαγράφεται, και ο χρήστης διαχρηστεί επανεκκατασκευάζει τον συναγερμό τότε και ο συναγερμός διαγράφεται.

- **search** κατηγορία: περιλαμβάνει την εξέταση συναγερμού. Στην περίπτωση αυτή κάποιος χρήστης, ο οποίος είναι κινητοποιημένος σε συνεχεία συναγερμό, εκτελεί το Boolean ψήφο που περιέχεται στον συγκεκριμένο συναγερμό. Ο χρήστης μπορεί να επιλέξει την ανάζυκτη συναγερμούς και να τα εξετάσει. Το αποτέλεσμα της ανάζυκτησης είναι τα αναγνωρίστικα ids των συναγερμών που ικανοποιούν το φίλτρο του συναγερμού. Ο χρήστης μπορεί να επιλέξει την ανάζυκτη συναγερμούς και να τα επιλέξει. Περισσότερες λεπτομέρειες θα ακολουθήσουν στο κεφάλαιο 6.

- **request/retrieve** κατηγορία: περιλαμβάνει υπηρεσίες διαδικτύου που αφορούν στην ανάκτηση των συναγερμών που έχουν δημιουργηθεί. Επιπλέον, την ανάκτηση αυτήν των συναγερμών που έχουν δημιουργηθεί συνεπάγεται η αποτίμηση αυτών των συναγερμών. Περισσότερες λεπτομέρειες θα ακολουθήσουν στο κεφάλαιο 6.
Αποτίμησης γίνεται από την τιμή του μεταδεδομένου LOM educational/learningResourceType. Η τιμή ‘exercise’ υποδεικνύει αντικείμενα απλών ερωτήσεων (assessment item) ενώ η τιμή ‘questionnaire’ αντικείμενα σύνθετων ερωτηματολογίων. Τα αντικείμενα της κατηγορίας σύνθετων ερωτηματολογίων (assessment test) αποτελούνται από αντικείμενα απλών ερωτήσεων (assessment item). Τα παραπάνω μας οδήγησαν στην δημιουργία τριών συλλογών (containers), τον assessment object container στον οποίον αποθηκεύουμε τις METS περιγραφές των Αντικειμένων Αποτίμησης, τον assessment item container στον οποίο αποθηκεύουμε την QTI περιγραφή του περιεχομένου ενός Αντικειμένου Αποτίμησης τύπου assessment item. Τέλος έχουμε τον assessment test container στον οποίον αποθηκεύουμε Αντικείμενα Αποτίμησης τύπου assessment test.

Ακολουθεί περιγραφή της αρχιτεκτονικής:

Στην αρχιτεκτονική που παραθέτουμε διαχρίνουμε τρία επίπεδα. Τα επίπεδα αποθήκευσης, εφαρμογών και υπηρεσιών. Στο επίπεδο αποθήκευσης έχουν αναπτυχθεί τρεις συλλογές τις Berkeley DB XML. Σε μία από τις συλλογές αποθηκεύονται οι METS περιγραφές των Αντικειμένων Αποτίμησης, ενώ στις άλλες δύο αποθηκεύονται οι QTI περιγραφές των
Αντικειμένων Αποτίμησης. Συγκεκριμένα υπάρχει μία συλλογή για τις QTI περιγραφές των Assessment Items και μία για τις QTI περιγραφές των Assessment Tests.

Σχετικά με τα επίπεδα εφαρμογών και υπηρεσιών:

- Η κατηγορία των υπηρεσιών search ακολουθεί την ίδια λογική των υπηρεσιών search των αποθηκών υλικών Αντικειμένων Μαθημάτων και Εκπαιδευτικών Αντικειμένων. Οι υπηρεσίες search εφαρμόζονται στην METS περιγραφή του Αντικειμένου Αποτίμησης. Έχουν δοθεί σχετικές πληροφορίες στην προηγούμενη παράγραφο και θα ακολουθήσουν λεπτομερέστερες στο 6ο κεφάλαιο.

- Στην κατηγορία υπηρεσιών submit/store διαχειρίζομαι τις εφαρμογές που αφορούν εισαγωγή νέου αντικειμένου στην αποθήκη υλικού, την διαχείριση, τροποποίηση ή αντιγραφή ήδη υπάρχοντος αντικειμένου. Στην περίπτωση εισαγωγής νέου αντικειμένου στην αποθήκη υλικού, ο χρήστης θα μπορεί αντικειμένο που θα εισάγει είναι έγκυρο (καλώντας το service validate). Η περιγραφή METS των μεταδεδομένων εισάγεται στον επιστρέφοντα container, ενώ μετά από έλεγχο του τύπου του αντικειμένου, τα assessment item εισάγονται στον assessment item container και τα assessment test εισάγονται στον assessment test container. Στην περίπτωση διαχειρίσεως, διαχειρίσεως ή επεξεργασίας αντικειμένου που ήδη υπάρχει στην βάση, γίνεται έλεγχος της κατάστασης του αντικειμένου (υπάρχει ΛΟΜ μεταδεδομένο του οποίου η τιμή υποδεικνύει την κατάσταση αντικειμένου) και ανάλογα το αίτημα του χρήστη εξυπηρετείται ή απορρίπτεται. Στον χρήστη σε κάθε περίπτωση επιστρέφεται μήνυμα με το οποίο ενημερώνεται για την ακριβή έκβαση του αιτήματος που υπέβαλε. Να επισημάνουμε ότι οι υπηρεσίες διαδικτύου της κατηγορίας αυτής, αφορούν και εφαρμόζονται στα αντικείμενα εξολοκλήρου, δηλαδή METS και QTI περιγραφή.

- Επίσης, έχουμε την κατηγορία request/deliver, η οποία ακολουθεί την ίδια λογική των υπηρεσιών request/deliver των αποθηκών υλικών Αντικειμένων Μαθημάτων και Εκπαιδευτικών Αντικειμένων. Να διευκρινίσουμε ότι η υπηρεσία getAOSummary εφαρμόζει την METS περιγραφή του αντικειμένου, ενώ η υπηρεσία getAO επιστρέφει την METS και QTI περιγραφή. Θα ακολουθήσει λεπτομερέστερη περιγραφή των υπηρεσιών στο 6ο κεφάλαιο.

Τέλος να σημειώσουμε ότι και στην περίπτωση της αποθήκης υλικού των αντικειμένων αποτίμησης και συγκεκριμένα στην περίπτωση της υπηρεσίας ενημέρωσης (update_AO)
Κεφάλαιο 4 – Αρχιτεκτονική Αποθηκών Υλικού Αντικειμένων Μαθημάτων, Εκπαιδευτικών Αντικειμένων και Αντικειμένων Αποτίμησης

Αντικειμένου Αποτίμησης, εφαρμόζεται έλεγχος ταυτόχρονης πρόσβασης, με τον τρόπο που προαναφέραμε.

4.4 Περίληψη

Στο κεφάλαιο αυτό παρουσιάσαμε την αρχιτεκτονική των αποθηκών υλικού των Αντικειμένων Μαθημάτων, Εκπαιδευτικών Αντικειμένων και Αντικειμένων Αποτίμησης. Επίσης για τα Αντικείμενα Μαθημάτων και Εκπαιδευτικά Αντικείμενα έχουμε υλοποιήσει μηχανισμό συναγερμών (alerts) τον οποίο και παρουσιάσαμε σε ορισμένο βαθμό. Παράλληλα δόθηκε μια πρώτη εικόνα των υπηρεσιών ιστού και του τρόπου διασύνδεσής με τις αποθήκες υλικού. Περισσότερες λεπτομέρειες για τις υπηρεσίες ιστού θα ακολουθήσουν στο κεφάλαιο 6. Στο επόμενο κεφάλαιο θα παρουσιάσουμε την δομή και σημασιολογία των φίλτρων Boolean και Fuzzy, που σχεδίασαμε και υλοποιήσαμε ώστε να υποστηρίξουμε υπηρεσίες αναζήτησης.
Κεφάλαιο 5

Μορφή και δομή φίλτρων αναζήτησης

5.1 Εισαγωγή
Η αναζήτηση Εκπαιδευτικών Αντικειμένων, Αντικειμένων Μαθημάτων και Αντικειμένων Αποτίμησης βασίζεται στη χρήση φίλτρων δίτιμης (Boolean) και ασαφούς (fuzzy) λογικής τα οποία ορίζονται επί τη βάση των μεταδεδομένων που ορίζει το πρότυπο LOM δεδομένου ότι και οι τρεις αυτές κατηγορίες αντικειμένων περιγράφονται με LOM μεταδεδομένα. Στο κεφάλαιο αυτό αναλύουμε τη μορφή αυτών των φίλτρων και παρουσιάζουμε τους αλγόριθμους υπολογισμού τους.

Στο κατώτερο επίπεδο των συντακτικών δέντρων υπάρχουν σχεσιακές εκφράσεις οι οποίες αναφέρονται στα στοιχεία του LOM και χρησιμοποιούν κατάλληλους τελεστές σύγκρισης για τη δημιουργία απλών συνθηκών οι οποίες αποτιμώνται για κάθε αντικείμενο που βρίσκεται στις αποθέσεις προαιρετικού να προσδιοριστούν εκείνα τα αντικείμενα τα οποία ικανοποιούν ένα φίλτρο. Στην περίπτωση των φίλτρων ασαφούς λογικής, κάθε όρος, εκτός από το λογικό τελεστή στον οποίο αντιστοιχεί περέχει και ένα βάρος (πραγματικός αριθμός στο διάστημα (0,1)) ο οποίος εκφράζει τη σχετική σημασία του όρου σε σχέση με τους υπόλοιπους όρους που βρίσκονται κάτω από τον ίδιο κόμβο του συντακτικού δέντρου.

Στην περίπτωση των φίλτρων δίτιμης λογικής, ένα αντικείμενο είτε ικανοποιεί ένα δεδομένο φίλτρο είτε δεν το ικανοποιεί. Στην περίπτωση των φίλτρων ασαφούς λογικής, μέσω κατάλληλων τύπων υπολογισμού, είναι δυνατό να αποδοθεί σε κάθε αντικείμενο ένα βαθμός ικανοποίησης για δεδομένο ασφαξίες φίλτρο μεταξύ του μηδέν (0) και του ένα (1). Με άλλα
λόγω στην περίπτωση των ασαφών φίλτρων, το αποτέλεσμα μιας αναζήτησης δεν είναι ένα επίπεδο σύνολο αλλά μια διατεταγμένη λίστα όπου τα στοιχεία της έχουν ένα βαθμό σχετικότητας που αποτυπώνει πόσο καλά το κάθε αντικείμενο υποκατάστησε το φίλτρο ασαφούς λογικής.

Στο κεφάλαιο αυτό στην ενότητα 5.2 θα δώσουμε εισαγωγικές / γενικές πληροφορίες για τα φίλτρα. Στην ενότητα 5.3 θα περιγράψουμε αναλυτικά τα Boolean φίλτρα, ενώ στην ενότητα 5.4 θα ακολουθήσει περιγραφή των Fuzzy φίλτρων. Στην ενότητα 5.4.1 θα περιγραφεί η φόρμουλα που χρησιμοποιείται προκειμένου να υπολογιστεί η αποτίμηση κάθε αντικειμένου. Στην ενότητα 5.5 θα παρουσιάσουμε την αντιστοιχία μεταξύ των μεταδεδομένων που χρησιμοποιούμε στα φίλτρα και των LOM μεταδεδομένων που περιέχονται στα έγγραφα που αντιπροσωπεύουν τα Εκπαιδευτικά Αντικείμενα, Αντικείμενα Μαθημάτων και Αποτίμησης. Επίσης θα δώσουμε και την σημασιολογία των μεταδεδομένων αυτών.

5.2 Γενικές πληροφορίες σχετικά με τα φίλτρα

Στο σημείο αυτό θα δώσουμε κάποιες εισαγωγικές πληροφορίες σχετικά με την δομή των φίλτρων.

![Εικόνα 5-1: σχήμα περιγραφής δενδρικής δομής των φίλτρων](image-url)
Στην εικόνα 5-1 παρατίθεται η γενική εικόνα της δενδρικής δομής των φίλτρων. Τα φίλτρα είναι τεσσάρων επιπέδων και αποτελούνται από θετικά στοιχεία το οποίο ονομάζεται Query (Query ονομάζεται το στοιχείο στην περίπτωση Boolean φίλτρου και FuzzyQuery στην περίπτωση Fuzzy φίλτρου) το οποίο περιλαμβάνει τουλάχιστον ένα όρο ανώτερου επιπέδου (upper level term) Uterm (Uterm ονομάζεται το στοιχείο στην περίπτωση του Boolean φίλτρου και FuzzyUterm στην περίπτωση του Fuzzy φίλτρου). Ένας Uterm όρος αποτελείται από τουλάχιστον ένα στοιχείο κατώτερου επιπέδου (lower level term) Lterm (Lterm ονομάζεται το στοιχείο στην περίπτωση του Boolean φίλτρου και FuzzyUterm στην περίπτωση του Fuzzy φίλτρου). Τέλος ένα στοιχείο Lterm περιλαμβάνει ένα τουλάχιστο στοιχείο Atom (Atom ονομάζεται το στοιχείο στην περίπτωση του Boolean φίλτρου και FuzzyUterm στην περίπτωση του Fuzzy φίλτρου). Να παρατηρήσουμε ότι το όνομα ενός στοιχείου Atom αντιστοιχεί στο στοιχείο LOM του οποίου την τιμή θέλουμε να εξετάσουμε.

Να συμπληρώσουμε ότι τα στοιχεία LOM που περιέχονται σε ένα φίλτρο περιλαμβάνουν τον χαρακτήρα ‘_' για να υποδείξουν την κατατάξηση από ‘παραθέτοντα στοιχείο σε περιεχόμενα στοιχεία. Για παράδειγμα το LOM στοιχείο educational/context/value, το οποίο περιέχεται σε ένα METS έγγραφο, το αναπαριστούμε σα ένα φίλτρο με την μορφή educational_context_value.

Παρασκότερες λεπτομέρειες σχετικά με τα στοιχεία ενός φίλτρου και τα γνωρίσματα τα οποία περιλαμβάνουν, θα δοθούν στις παρακάτω ενότητες στις οποίες αναλύουμε ξεχωριστά τις δύο κατηγορίες φίλτρων.

5.3 Boolean LOM φίλτρα

Τα Boolean LOM φίλτρα είναι δομημένα ως Boolean συντακτικά δέντρα τεσσάρων επιπέδων και χρησιμοποιούνται προκειμένου να υποστηρίξουν λειτουργικότητα που αφορά στην αναζήτηση αντικειμένων στις αποθήκες υλικού των Αντικειμένων Μαθημάτων, Εκπαιδευτικών Αντικειμένων και Αντικειμένων Λογιστικής. Στην ενότητα αυτή θα εξηγήσουμε την δομή των φίλτρων παραθέτοντας ένα παράδειγμα Boolean φίλτρου. Στην συνέχεια θα εξηγήσουμε τον τρόπο με τον οποίο το φίλτρο μεταφράζεται σε έκφραση η οποία εφαρμόζεται στις αποθήκες υλικού και γίνεται η ανάκτηση των αντικειμένων που μας ενδιαφέρουν.
Εικόνα 5-2: παράδειγμα φίλτρου δύτιμης λογικής το οποίο χρησιμοποιείται για την αναζήτηση αντικειμένων στις αποθήκες υλικού

Στην εικόνα 5-2, η οποία αποτελεί παράδειγμα Boolean φίλτρου, βλέπουμε τα τέσσερα επίπεδα κόμβων από τα οποία αποτελείται το φίλτρο όπως προαναφέραμε. Το ριζικό στοιχείο, ονομάζεται Query, και περιλαμβάνει δύο γνωρίσματα. Το πρώτο γνώρισμα αφορά τον τύπο (type) του κόμβου και αντιστοιχεί στο λογικό τελεστή που θέλουμε να εφαρμόσουμε (and ή or) (στο παράδειγμα του σχήματος ο τελεστής έχει τιμή and). Το δεύτερο γνώρισμα (flag) είναι προαιρετικό (δεν εμφανίζεται στο σχήμα), και αφορά στην παρουσία ή όχι του τελεστή άρνησης (not).

Το ριζικό στοιχείο, σύμφωνα με τον ορισμό των φίλτρων, περιλαμβάνει τουλάχιστον ένα στοιχείο Uterm. Τα στοιχεία αυτά περιλαμβάνουν τα δύο γνωρίσματα type και flag (προαιρετικό γνώρισμα) που αναφέρονται στο παράδειγμα. Στο παράδειγμα του σχήματος βλέπουμε δύο τέτοια στοιχεία και παρατηρούμε από δεξιά προς τα αριστερά, ότι το ένα στοιχείο Uterm περιλαμβάνει τελεστή and και το άλλο τελεστή or (τιμές των γνωρισμάτων τύπου type). Το γνώρισμα flag δεν χρησιμοποιείται.
Το στοιχείο Uterm, σύμφωνα με τον ορισμό των φίλτρων, αποτελείται από τουλάχιστον ένα Lterm στοιχείο. Τα στοιχεία Lterm περιλαμβάνουν και αυτά, τα γνώρισμα τυρε και flag. Στο παράδειγμα του σχήματος ο όρος Uterm που έχει γνώρισμα τυρε με τιμή and και αποτελείται από ένα στοιχείο Lterm με γνώρισμα τυρε που έχει τιμή or. Ο όρος Uterm του οποίου το γνώρισμα τυρε έχει τιμή or περιλαμβάνει δυο στοιχεία Lterm. Τα στοιχεία αυτά, από αριστερά προς τα δεξιά, περιλαμβάνουν γνωρίσματα and και οι αντίστοιχοι. Επίσης το δεξί Lterm στοιχείο περιλαμβάνει και γνώρισμα flag.

Θα πρέπει στο σημείο αυτό να εξηγήσουμε λεπτομερέστερα την σημασία των γνωρισμάτων τυρε και flag. Το γνώρισμα τυρε ενός στοιχείου, υποδεικνύει την σχέση με την οποία συνδέονται τα παρεχόμενα υπό-στοιχεία του στοιχείου αυτού. Δηλαδή, επί του παραδείγματος του σχήματος το γνώρισμα τυρε με τιμή and που περιέχεται στο ριζικό στοιχείο Query υποδεικνύει συμμετοχική ότι και τα δύο Uterms του Query πρέπει να υιοθετούνται ώστε να είναι αληθές το Query. Αντίστοιχα είναι η σημασιολογία του γνωρισμάτος και για τα άλλα στοιχεία στα οποία περιλαμβάνεται. Από την άλλη, το γνώρισμα flag είναι τελεστής άρνησης ο οποίος αντιστρέφει την έκφραση από αληθή σε ψευδή και αντίστροφα.

Τέλος, στο τέταρτο επίπεδο του δέντρου έχουμε τα στοιχεία Atom. Ένα στοιχείο Lterm πρέπει να περιλαμβάνει ένα τουλάχιστον τέτοιο στοιχείο. Τα στοιχεία Atom διαχωρίζονται σε απλά και σύνθετα. Τα απλά στοιχεία Atom, σύμφωνα με τον ορισμό των φίλτρων, είναι τριπλέτες της μορφής <elem, op, value> οι οποίες προσαρμοζόταν το είδος και τις τιμές των LOM στοιχείων τις οποίες θέλουμε ένα Εκπαιδευτικό Αντικείμενο, Αντικείμενο Μαθήματος ή Αντικείμενο Αποτίμησης να περιέχει. Ο όρος elem είναι το όνομα του στοιχείου Atom και υποδεικνύει το LOM στοιχείο το οποίο εξετάζουμε. Ο όρος elem είναι το είδος του Atom στοιχείου και εφαρμόζει την τιμή που θέλουμε το LOM στοιχείο που επιλέξαμε να υιοθετούμε. Ο όρος op, γνώρισμα του στοιχείου Atom, υποδεικνύει την μαθηματική έκφραση (=, !=, >, <, <=, >, contains) ο οποίος θα εφαρμοστεί κατά την σύγκριση της τιμής του LOM στοιχείου που καθορίζεται στο φίλτρο, με την πραγματική τιμή που έχει το στοιχείο αυτό στο έγγραφο που αντιστοιχεί στο αντικείμενο (Εκπαιδευτικό, Αποτίμησης, Μάθησης). Επιπρόσθετα, στην περίπτωση στοιχείων LOM των οποίων η τιμή είναι τύπου αλφαριθμητικού (string) μπορούμε στο απλό στοιχείο Atom να συμπεριλάβουμε προαιρετικά γνώρισμα language το οποίο έχει την σημασιολογία που δίνεται για τους τύπους language στο πρότυπο LOM.
Αντίθετα, τα σύνθετα Atom, είναι στοιχεία που αποτελούνται από περισσότερες της μίας τριπλέτες <elem, op, value> και δεν περιέχουν γνωρίσματα. Για τις τριπλέτες που περιέχονται στο σύνθετο στοιχείο Atom ισχύει ότι έχουμε περιγράψει παραπάνω για την περίπτωση των απλών στοιχείων Atom.

Θα πρέπει να επισημάνουμε ότι τα σύνθετα Atom, είναι στοιχεία που αποτελούνται από περισσότερες της μίας τριπλέτες <elem, op, value> και δεν περιέχουν γνωρίσματα. Για τις τριπλέτες που περιέχονται στο σύνθετο στοιχείο Atom ισχύει ότι έχουμε περιγράψει παραπάνω για την περίπτωση των απλών στοιχείων Atom.

Αναλύοντας το σχήμα του παραδείγματος και λαμβάνοντας υπόψη αυτά που αναφέραμε για τα στοιχεία Atom, παρατηρούμε από αριστερά προς τα δεξιά τα εξής:

- Έχουμε Atom με Όνομα ‘educational_context_value’, op με τιμή ‘=’ και η τιμή του Atom στοιχείου είναι ‘higher education’. Σημασιολογικά αυτό σημαίνει LOM στοιχείο educational/context/value με τιμή higher education.

- Το επόμενο Atom έχει τιμή ‘medium’, Όνομα ‘educational_difficulty_value ’ και op με τιμή ‘=’. Δηλαδή αναφέρόμαστε στο LOM στοιχείο educational/difficulty/value με τιμή medium.

- Το επόμενο στοιχείο που συναντάμε στο παράδειγμα είναι ένα σύνθετο στοιχείο Atom. Το στοιχείο αυτό έχει Όνομα lifeCycle/contribute. Τα σύνθετα Atom στοιχεία όπως περιγράφαμε παραπάνω περιλαμβάνουν περισσότερα του ενός στοιχείου και δεν περιλαμβάνουν γνωρίσματα Το στοιχείο lifeCycle/contribute περιλαμβάνει τα εξής στοιχεία:

 ▪ Στοιχείο με Όνομα date_dateTime, γνώρισμα op με τιμή ‘!= ’, ενώ η τιμή του στοιχείου είναι ‘2002-08-05T00:00:00’.

 ▪ Στοιχείο με Όνομα entity, τιμή LOMv.1 και op με τιμή ‘=’

 ▪ Στοιχείο με Όνομα role_value, τιμή author και op με τιμή ‘=’

 ▪ Στοιχείο με Όνομα date_description_string, τιμή ‘descr’ και op με τιμή ‘=’
Θα πρέπει να επαναλάβουμε ότι τα στοιχεία που περιλαμβάνει ένα σύνθετο Atom στοιχείο συνδέονται με τον τελεστή and. Δηλαδή, επί του συγκεκριμένου παραδείγματος, ο περιορισμός που απεξέλλει το σύνθετο στοιχείο του φίλτρου θα ικανοποιείτο αν η ακόλουθη XML αναπαράσταση περιέχεται στο έγγραφο που μελετάμε:

```xml
<lifeCycle>
  <contribute>
    <role>
      <value>author</value>
    </role>
    <entity>LOMv.1</entity>
    <date>
      // τιμή διάφορη του 2002-08-05T00:00:00 που
      // φαίνεται στην εικόνα π.χ
      <dateTime>2001-05-05T00:00:00</dateTime>
      <description>
        <string>descr</string>
      </description>
    </date>
  </contribute>
</lifeCycle>
```

Συνοψίζοντας όλους τους παραπάνω περιορισμούς και αναπαριστώντας τους στην XML μορφή που θα είχαν τα αντίστοιχα LOM μεταδεδομένα σε ένα XML έγγραφο που αντιπροσωπεύει ένα αντικείμενο Εκπαιδευτικό, Μαθήματος και Αποτίμησης έχουμε τα ακόλουθα:

Έστω

```xml
<educational>
  <context>
    <value>higher education</value>
  </context>
</educational>

<educational>
  <difficulty>
    <value>medium</value>
  </difficulty>
</educational>
```
Το φίλτρο μας υποδεικνύει ότι θέλουμε να ανακτήσουμε τα αντικείμενα των οποίων η XML αναπαράσταση περιέχει τα παραπάνω LOM μεταδεδομένα και για τα οποία ισχύει η ακόλουθη λογική έκφραση:

\[(A \text{ or } B) \text{ and } \neg \left(C \text{ and } \neg D \right) \text{ or } \neg \left(E \text{ or } F \right) \right) = \text{true}
5.3.1 Αλγόριθμος αυτόματου μετασχηματισμού φίλτρων σε XQuery ερωτήματα

Να σημειώσουμε ότι για να καταλήξουμε σε λογική έκφραση, όπως την τελευταία έκφραση της προηγούμενης ενότητας, το φίλτρο ‘μεταφράζεται’ με χρήση της XQuery. Έχει υλοποιηθεί αλγόριθμός σε XQuery ο οποίος επεξεργάζεται τις πληροφορίες που περιέχονται στο έγγραφο το οποίο αναπαριστά το φίλτρο. Από τις πληροφορίες αυτές, καταλήγουμε σε λογική έκφραση η οποία θα εφαρμοστεί σε κάθε αντικείμενο της αποθήκης υλικού. Τα αντικείμενα για τα οποία η έκφραση είναι αληθής, ανακτώνται. Ουσιαστικά, η λογική έκφραση αποτελεί την where συνθήκη επερωτήματος XQuery, που θα εφαρμοστεί στην αποθήκη υλικού, ώστε να ανακτηθούν τα επιθυμητά αντικείμενα.

Ο ψευδοκώδικας που περιγράφει τον αλγόριθμο μετατροπής φίλτρου σε where συνθήκη επερωτήματος είναι:

```plaintext
for all Atoms in each Lterm
  if(Atom is not complex)
    get (name of Atom element)
    get (attribute language of Atom if exist)
    get (attribute op of Atom element)
    get (attribute flag of Atom element if exist)
    get (Atom text)
    finally,
    create a string that contains all the above information
    //this string is the result of the concatenation of the above information
  else if(Atom is complex)
    // a complex Atom contains simple Atoms
    for (each inner simple Atom that is containing)
      get (name of Atom element)
      get (attribute language of Atom if exist)
      get (attribute op of Atom element)
      get (attribute flag of Atom element if exist)
      get (Atom text)
      finally,
      create a string that contains all the above information
      finally, get all the strings that have been created for each inner Atom and combine them using 'and'
    if(Atom represents an LOM element that can be repeated in a document)
      repeat the above as many times as the number of element instances in the doc
  end of all
concatenate strings created for each Atom using the value of attribute op of Lterm
if (attribute flag of Lterm exists)
  the resultant string of Lterm begins with 'not'
  //The attribute flag if exists declares that we are seeking for documents that
  //don’t satisfy the string that created from the concatenation)
end of all
```
Για την περίπτωση του φίλτρου που μελετάμε ως παράδειγμα η λογική έκφραση στην οποία καταλήγουμε και η οποία θα αποτελέσει την συνθήκη where επερωτήματος που θα εφαρμοστεί στην αποθήκη υλικού είναι η εξής:

(educational/context/value="higher education" or educational/difficulty/value="medium") and

((let $number:= count(lifeCycle/contribute) let $Element :=
(for $count in 1 to $number
 where lifeCycle/contribute[$count]/date/dateTime!="2002-08-05T00:00:00" and
 lifeCycle/contribute[$count]/date/description/string="descr" and
 lifeCycle/contribute[$count]/entity="LOMV.1" and
 lifeCycle/contribute[$count]/role/value="author"
 return true()
)
 return distinct-values($Element)
)
and not lifeCycle/status/value="draft"
) or not
(rights/cost/value="yes" or rights/description/string="descr")
)
Κεφάλαιο 5 – Μορφή και δομή φίλτρων αναζήτησης

Θα πρέπει να παρατηρήσουμε τα εξής:

Το σύνθετο όπως ορίσαμε, στοιχείο lifeCycle/contribute σύμφωνα με το πρότυπο LOM μπορεί να έχει περισσότερες της μίας παρουσίας σε ένα έγγραφο που περιέχει LOM μεταδεδομένα. Επομένως θα πρέπει να εξετάσουμε κάθε μία από τις επαναλήψεις του μεταδεδομένου έξοχως για να δούμε αν έστω μία από αυτές περιέχει τα υπό-στοιχεία με τις τιμές που ορίσαμε στο φίλτρο. Για το λόγο αυτό στην παραπάνω έκφραση, στον άλλο χώρο που γίνεται στο μεταδεδομένο lifeCycle/contribute, παρατηρηθούμε επαναληπτική διαδικασία for. Η ίδια διαδικασία εφαρμόζεται για όλα τα σύνθετα στοιχεία που μπορεί να έχουν παραπάνω από μία εμφανίσεις σε ένα έγγραφο. (η διάκριση των στοιχείων σε σύνθετα και απλά θα παρουσιαστεί στην ενότητα 5.5)

Στην συνέχεια η παραπάνω έκφραση, ως την ονομάζουμε Condition, χρησιμοποιείται για την εφαρμογή επερωτήματος στις αποθήκες υλικού:

```
for $result in collection('έδω βάζουμε το όνομα της αποθήκης υλικού')
where Condition
return (@ID)
```

Η μαθηματική έκφραση Condition εφαρμόζεται στην αποθήκη υλικού (στην αποθήκη υλικού Αντικειμένων Μαθημάτων, Αποτίμησης ή Εκπαιδευτικών Αντικειμένων) και τελικά θα επιστραφεί ένας identifier. O identifier αυτός περιέχεται σε κάθε έγγραφο προκειμένου να διακρίνεται μοναδικά κάθε έγγραφο.

5.4 Fuzzy LOM φίλτρα

Τα Fuzzy LOM φίλτρα έχουν την ίδια δομή με τα Boolean LOM φίλτρα.
Κεφάλαιο 5 – Μορφή και δομή φίλτρων αναζήτησης

Η διάρκεια των φίλτρων αυτών αφορά στην ονομασία των κόμβων και στην παρουσία ανάρτησης ενός επιπλέον γνωρίσματος. Συγκεκριμένα οι κόμβοι των φίλτρων έχουν τις εξής ονομασίες: FuzzyQuery, FuzzyUterm, FuzzyLterm, FuzzyAtom. Επιπλέον οι κόμβοι των Fuzzy LOM φίλτρων (πλην του κόμβου FuzzyQuery) έχουν ένα επιπλέον γνώρισμα βάρος (weight) (με 0<weight<1) το οποίο εκφράζει τη σχετική σημασία του όρου σε σχέση με τους υπόλοιπους όρους που βρίσκονται κάτω από τον ίδιο κόμβο του συντακτικού δέντρου.

Το ριζικό στοιχείο του φίλτρου (FuzzyQuery) δεν έχει βάρος (δεν είναι σιόπτιμο αφού ο root κόμβος δεν έχει parent κόμβο).

Παραθέτουμε το ίδιο παράδειγμα φίλτρου με αυτό που χρησιμοποιήσαμε στην περίπτωση των Boolean φίλτρων. Παρατηρούμε βέβαια στους κόμβους των FuzzyUterm, FuzzyLterm, FuzzyAtom, την τιμή του γνωρίσματος βάρος (weight) για το οποίο αναφερόμαστε παραπάνω. Εκτός του γνωρίσματος weight, οι περιορισμοί των στοιχείων σχετικά με τα άλλα γνωρίσματα που πρέπει να παρέχουν και τα στοιχεία από τα οποία αποτελούνται είναι οι ίδιοι.

Εικόνα 5-3: παράδειγμα φίλτρου ασαφούς λογικής που χρησιμοποιείται για την αποτίμηση αντικειμένου

<table>
<thead>
<tr>
<th>Υπότιμημα</th>
<th>Query</th>
<th>Upper Level Term</th>
<th>Lower Level Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>είδος</td>
<td>FuzzyQuery</td>
<td>FuzzyUterm</td>
<td>FuzzyLterm</td>
</tr>
<tr>
<td>είδος</td>
<td>Atom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOM element</td>
<td>LOM element</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o value</td>
<td>o value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Συγκριση τιμής</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
με αυτούς που αφορούν στα στοιχεία των Boolean φίλτρων. Για το λόγο αυτό δεν θα αναφερθούμε εκ νέου. Στην επόμενη ενότητα θα εξηγήσουμε τον τρόπο με τον οποίο χρησιμοποιείται το γνώρισμα weight. Το γνώρισμα αυτό χρησιμοποιείται σε φόρμουλα από την οποία προκύπτει ένας πραγματικός αριθμός στο διάστημα [0-1] για κάθε αντικείμενο της αποθήκης υλικού. Έτσι στην περίπτωση των Fuzzy φίλτρων ανακτούμε όλα τα αντικείμενα της αποθήκης υλικού, ταξινομημένα, με τρόπο ο οποίος καθορίζεται από το φίλτρο που εφαρμόζεται.

5.4.1 Φόρμουλα υπολογισμού των Fuzzy LOM φίλτρων

Εικόνα 5-4: παράδειγμα φίλτρου ασαφούς λογικής που χρησιμοποιείται για την αποτίμηση αντικειμένου

Η φόρμουλα υπολογισμού των LOM φίλτρων ασαφούς λογικής βασίζεται στο εκτεταμένο Boolean μοντέλο. Για να περιγράψουμε τον υπολογισμό των ερωτήσεων σε αυτό το μοντέλο, ας υποθέσουμε ότι Φ είναι μια συνάρτηση υπολογισμού με Φ: Q ∈ O → [0,1] η οποία δίνει τιμές μεταξύ [0,1] σε κάθε έγχρωμο query q ∈ Q για κάθε Επισκευασμένο
Κεφάλαιο 5 – Μορφή και δομή φίλτρων αναζήτησης

Αντικείμενο, Αντικείμενο Μάθησης ή Αντικείμενο Αποτίμησης που ανήκει στο σύνολο Ο. Η συνάρτηση ορίζεται επαναληπτικά για ένα αντικείμενο, έστω o, ως εξής:

\[
F\left(\langle t_i, w_i \rangle_{\text{OR}...\text{OR}}\langle t_N, w_N \rangle, o\right) = \left(\frac{\sum_{i=1}^{N} F(t_i, o)^p \cdot w_i^p}{\sum_{i=1}^{N} w_i^p}\right)^{1/p}
\]

\[
F\left(\langle t_i, w_i \rangle_{\text{AND}...\text{AND}}\langle t_N, w_N \rangle, o\right) = 1 - \left(\frac{\sum_{i=1}^{N} (1 - F(t_i, o))^p \cdot w_i^p}{\sum_{i=1}^{N} w_i^p}\right)^{1/p}
\]

\[
F(\text{NOT } t, o) = 1 - F(t, o)
\]

\[
F(\langle \text{elem}, \text{op}, \text{value} \rangle, o) = \begin{cases} 1, & \text{if } [\text{o.elem op value}] \text{ is true} \\ 0, & \text{otherwise} \end{cases}
\]

Ο τελευταίος ορισμός χρησιμοποιείται στην περίπτωση απλών στοιχείων Atom, τα οποία περιέχουν μία τριπλέτα της μορφής \langle \text{elem}, \text{op}, \text{value} \rangle. Για τα σύνθετα Atom, που περιλαμβάνουν περισσότερες τριπλέτες, ο ορισμός επεκτείνεται χρησιμοποιώντας τις επιμέρους τριπλέτες.

Ο τελευταίος ορισμός επεκτείνεται για συνθετά στοιχεία όταν ο χαρακτηριστικό του Atom είναι μια τριπλέτα της μορφής \langle \text{complexAtom}, \text{op}, \text{value} \rangle. Για το σύνθετο στοιχείο \langle \text{lifeCycle/contribute} \rangle έστω \(o \) έχουμε:

\[
F(\text{educational/context/value, } =, \text{ higher education}) = 1
\]

\[
F(\text{educational/difficulty/value, } =, \text{ medium}) = 1
\]

Για το σύνθετο στοιχείο \langle \text{lifeCycle/contribute} \rangle έστω \(o \) έχουμε:
Κεφάλαιο 5 – Μορφή και δομή φίλτρων αναζήτησης

F(lifeCycle/contribute/date/dateTime, !=, 2002-08-05T00:00:00) = 1
F(lifeCycle/contribute/date/description/string, =, descr) = 0
F(lifeCycle/contribute/entity, =, LOMv.1) = 0
F(lifeCycle/contribute/role/value, =, author) = 1

Όπως προαναφέραμε στο κεφάλαιο των φίλτρων δίτιμης λογικής (Boolean φίλτρα), για να
ικανοποιείται ένα σύνθετο αντικείμενο που έχει δοθεί σε φίλτρο δίτιμης ή ασαφούς λογικής, θα
πρέπει όλοι οι περιορισμοί που έχουν δοθεί για τις τιμές των στοιχείων από τα οποία
αποτελείται να ικανοποιούνται στο συγκεκριμένο έγγραφο / αντικείμενο.

Στο συγκεκριμένο παράδειγμα, βλέπουμε ότι κάποια από τα στοιχεία από τα οποία
αποτελείται το σύνθετο στοιχείο lifeCycle/contribute δεν ικανοποιούνται από το έγγραφο ο.
Η απάντηση, λοιπόν στο Boolean μοντέλο για αυτή την ερώτηση είναι ψευδής και επομένως
για το lifeCycle/contribute έχουμε :

F(lifeCycle/contribute) = 0

Συνεχίζοντας την ανάλυση θεωρούμε :

F(lifeCycle/status/value, =, draft) = 0
F(rights/cost/value, =, yes) = 1
F(rights/description/string, =, descr) = 0

Τότε λαμβάνοντας υπόψη τα βάρη που δίνονται σε κάθε κόμβο και με βάση τους παραπάνω
tύπους αποτίμησης αρωγήσεως θα έχουμε (παραθέτουμε τους τύπους αποτίμησης
χρησιμοποιώντας την ονοματολογία που έχουμε δώσει στους κόμβους του σχήματος) :

\[A = \left(\frac{\left(1^p \times 0.3^p\right) + \left(1^p \times 0.2^p\right)}{0.3^p + 0.2^p} \right)^{\frac{1}{p}} \]

\[B = 1 - \left(\frac{\left(1 - 0\right)^p \times 0.05^p + \left(1 - (1 - 0)\right)^p \times 0.02^p}{0.05^p + 0.02^p} \right)^{\frac{1}{p}} \]

\[C = \left(\frac{1^p \times 0.1^p + 0^p \times 0.05^p}{0.1^p + 0.05^p} \right)^{\frac{1}{p}} \]
Τελικά καταλήγουμε στην μαθηματική έκφραση που θα μας δώσει την αποτίμηση του αντικειμένου:

\[
F = 1 - \left(\frac{(1-D)^p \cdot 0.2^p + (1-E)^p \cdot 0.3^p}{0.2^p + 0.3^p} \right)^{1/p}
\]

Για \(p=1 \) ο παραπάνω τύπος δίνει (κατά προσέγγιση) \(F(f_1, l_01) = 0.5847 \)
Για \(p=2 \) ο παραπάνω τύπος δίνει (κατά προσέγγιση) \(F(f_1, l_01) = 0.2410 \)

Παρατηρούμε ότι αν χρησιμοποιούσαμε αντίστοιχο Boolean φίλτρο τότε η απάντηση θα ήταν ψευδής. Συνεπώς, υπογεγράφηκε παρόμοια τους όρους ώστε να ταξινομούμε επακόλουθα αντικείμενα (ή μαθήματα αντικειμένων και αντικείμενα αποτίμησης) ακόμη και αν το αντίστοιχο Boolean φίλτρο δεν ικανοποιούσε.

5.4.2 Αλγόριθμος αυτόματου μετασχηματισμού φίλτρων σε XQuery ερωτήματα

Τελειώνοντας να προσθέσουμε ότι ο αλγόριθμος ο οποίος μετατρέπει το φίλτρο σε τμήμα επεξεργασίας το οποίο θα εφαρμοστεί στην αποθήκη υλικού ακολουθεί την ίδια λογική με τον αντίστοιχο αλγόριθμο των Boolean φίλτρων. Στην περίπτωση, όμως των φίλτρων ασαφούς λογικής η έκφραση στην οποία καταλήγουμε από την επεξεργασία του φίλτρου συμπεριλαμβάνει την εφαρμογή της φόρμουλας που δόθηκε παραπάνω. Εφαρμόζοντας την έκφραση αυτή, στην αποθήκη υλικού των αντικειμένων ανακτούμε την αποτίμηση κάθε αντικειμένου.

Συγκεκριμένα, για το παράδειγμα της εικόνας 5-4, ο αλγόριθμος μετασχηματισμού του φίλτρου θα μας δώσει την έκφραση \(F \) που ακολουθεί. Χρησιμοποιούμε τα ενδιαφέροντά στάδια \(A, B, C, D, E \) για την καλύτερη κατανόηση από τον αναγνώστη. Επίσης στην έκφραση \(F \) που καταλήξαμε, το \(p \) του τύπου αποτίμησης είναι 2.
Κεφάλαιο 5 – Μορφή και δομή ψάλτρων αναζήτησης

A:

pow
{
 (pow(
 (pow(
 (if(educational/context/value="higher education")
 then 1 else 0
),2
)*0.09
 +
 pow(
 (if(educational/difficulty/value="medium")
 then 1 else 0
),2
)*0.04
) div 0.13 , 0.5
})

B:

1 - pow(
 [pow(
 [1- if(let $number:=count(lifeCycle/contribute)
 let $Element :=
 (for $count in 1 to $number
 where
 lifeCycle/contribute[$count]/date/dateTime!=
 "2002-08-05T00:00:00"
 and
 lifeCycle/contribute[$count]/date/description/string ="descr"
 and
 lifeCycle/contribute[$count]/entity="LOMV.1"
 and
 lifeCycle/contribute[$count]/role/value="author"
)
 return true()
)
 return distinct-values($Element)
)then 1 else 0
),2
)*0.0025
+
pow(
 (1 - (1 - if(lifeCycle/status/value="draft")
 then 1 else 0
)
),2
)*0.0004
)div 0.0029,0.5
)
Κεφάλαιο 5 – Μορφή και δομή ψηφιωτών αναζήτησης

\[
C: \quad \text{pow}(\text{pow(} \begin{array}{l}
 \text{if(rights/cost/value="yes")}
 \text{then 1 else 0}
 \), 2
 \text{)}*0.01
 +
 \text{pow(} \begin{array}{l}
 \text{if(rights/description/string="descr")}
 \text{then 1 else 0}
 \), 2
 \text{)}*0.0025
\end{array}\text{div 0.0125, 0.5})
\]

\[
D: \quad 1 - \text{pow(} \begin{array}{l}
 \text{pow(} (1-A, 2)*0.0625\text{div 0.0625, 0.5})
\end{array}\text{)}
\]

\[
E: \quad \text{pow(} \begin{array}{l}
 \text{pow(B, 2)*0.16}
 +
 \text{pow(} (1-C), 2 \text{)}*0.1225
\end{array}\text{div 0.2825, 0.5})
\]

\[
F: \quad 1 - \text{pow(} \begin{array}{l}
 \text{pow(} (1-D), 2 \text{)}*0.04
 +
 \text{pow(} (1-E), 2 \text{)}*0.09
\end{array}\text{div 0.13, 0.5})
\]

Να παρατηρήσουμε ότι κάποια από τα σύνθετα Atom, όπως π.χ. το στοιχείο lifeCycle/contribute μπορεί να έχουν περισσότερες της μίας παρουσίας σε ένα έγγραφο. Επομένως θα πρέπει να εξετάσουμε κάθε μια από τις επαναλήψεις του μεταδεδομένου εξερευνώντας τα υπο-στοιχεία με τις τιμές που ορίσαμε στο φίλτρο. Επειδή το λόγο αυτό στην παραπάνω έκφραση στον έλεγχο που γίνεται στο μεταδεδομένο lifeCycle/contribute, παρατηρούμε επαναληπτική διαδικασία for.
Συνεχίζοντας, η συνάρτηση pow(δεκαδικός ,δύναμη) που ψάχνεται στην έκφραση, είναι συνάρτηση XQuery που υπολογίζει την ύψωση δεκαδικού 0 - 1 σε θετική ακέραια δύναμη. Η υλοποίηση της συνάρτησης pow που χρησιμοποιείται στον υπολογισμό της φόρμουλας που θα μας δώσει την αποτίμηση του αντικειμένου, γίνεται όταν η έκφραση θα εφαρμοστεί στην αποθήκη υλικού Αντικειμένων Μαθημάτων, Επαναδεικτών Αντικειμένων και Αντικειμένων Αποτίμησης.

Να συμπληρώσουμε ότι η υλοποίηση της συνάρτησης pow απαιτεί επιπλέον συναρτήσεις. Όπως και η pow, έτσι και η υλοποίηση των επιπλέον συναρτήσεων γίνονται στην αποθήκη υλικού.

Συγκεκριμένα, το επερώτημα που θα εφαρμοστεί στην αποθήκη υλικού:

```
for $result in collection(//βάζουμε την αποθήκη υλικού) "+
let $rank := F
order by $rank descending return ($rank,string(@ID))
```

Στην αποθήκη υλικού θα εφαρμοστεί η παραπάνω έκφραση και τελικώς θα ανακτηθούν οι identifiers και οι αποτιμήσεις όλων των αντικειμένων ταξινομημένα με αύξουσα σειρά.
Στην παραπάνω έκφραση, παρατηρούμε την δήλωση F, όπου αποτελεί την έκφραση F που περιγράφαμε παραπάνω. Επιπλέον παρατηρούμε:

Την συνάρτηση pow καθώς και τις $implementRoot$ και $estimateRoot2$. Η pow συνάρτηση είναι αναδρομική και χρησιμοποιείται για τον υπολογισμό της ύψωσης δεκαδικού $0 - 1$ σε θετική ισχύ α (δύναμη). Οι δύο άλλες συναρτήσεις καλούνται από την pow και χρησιμοποιούνται για τον υπολογισμό της ύψωσης σε $1/p$ δύναμη. Ουσιαστικά υπολογίζουν την p ρίζα ενός αριθμού.

Ο αλγόριθμός από τον οποίο προέκυψε, με κάποιες βελτιστοποίησες η συνάρτηση υπολογισμού της α (την συνάρτηση αυτή την ύλης, οι $implementRoot$ και η $estimateRoot2$) είναι ο εξής:

```plaintext
let "number", the number that will be raised in power a

oldEstimate = number / 2 // initial value to temporary variable

for i=0;i<n; i++ //for n = 50 the algorithm gives accuracy
{
    NewEstimate = \( \frac{number^a - 1}{oldEstimate^{a-1} + oldEstimate^{a-2} + \ldots + oldEstimate + 1} + 1 \)

    oldEstimate = NewEstimate
}
return NewEstimate
```

5.5 Τα LOM μεταδεδομένα των φίλτρων και η σημασιολογία τους

Στην ενότητα αυτή θα παρουσιάσουμε την αντιστοιχία μεταξύ των μεταδεδομένων που χρησιμοποιούμε στα φίλτρα και των LOM μεταδεδομένων που περιέχονται στα έγγραφα που αντιπροσωπεύουν τα Εκπαιδευτικά Αντικείμενα, Αντικείμενα Μαθηματών και Αποτίμησης. Επίσης θα δώσουμε και την σημασιολογία των μεταδεδομένων.

Να διευκρινίσουμε ότι ο όρος σύνθετο αντικείμενο που θα χρησιμοποιούμε παρακάτω αναφέρεται στα LOM μεταδεδομένα που χρησιμοποιούμε στα φίλτρα. Στα σύνθετα στοιχεία αναφερόμαστε στις παραπάνω ενότητες και εξηγήσαμε ότι έναι atom στοιχεία που περιέχουν άλλα atoms και δεν περιλαμβάνουν γνωρίσματα.
<table>
<thead>
<tr>
<th>Μεταδεδομένα στο φίλτρο</th>
<th>Μεταδεδομένα σε έγγραφο</th>
<th>Πεδίο τιμών</th>
<th>Σημασιολογία</th>
</tr>
</thead>
<tbody>
<tr>
<td>general_identifier</td>
<td>general/identifier</td>
<td>String</td>
<td>Σύνθετο στοιχείο το οποίο αντιστοιχεί σε ετικέτα η οποία προσδιορίζει μοναδικά το αντικείμενο</td>
</tr>
<tr>
<td>general_identifier/catalog</td>
<td>general/identifier/catalog</td>
<td>String</td>
<td>σχήμα ονοματοδοσίας</td>
</tr>
<tr>
<td>general_identifier/entry</td>
<td>general/identifier/entry</td>
<td>String</td>
<td>αλφαριθμητικό ονοματοδοσίας που αντιστοιχεί στην τιμή της ετικέτας identifier</td>
</tr>
<tr>
<td>general_title_string</td>
<td>general/title/string</td>
<td>String</td>
<td>το όνομα που έχει δοθεί στο αντικείμενο</td>
</tr>
<tr>
<td>general_language</td>
<td>general/language</td>
<td>String</td>
<td>γλώσσα που χρησιμοποιείται στο αντικείμενο</td>
</tr>
<tr>
<td>general_description_string</td>
<td>general/description/string</td>
<td>String</td>
<td>Περιγραφή του περιεχομένου του αντικειμένου</td>
</tr>
<tr>
<td>general_keyword_string</td>
<td>general/keyword/string</td>
<td>String</td>
<td>Λέξη κλειδί ή φράση που παραγράφει το θέμα με το οποίο ασχολείται το αντικείμενο</td>
</tr>
<tr>
<td>general_coverage_string</td>
<td>general/coverage/string</td>
<td>String</td>
<td>χρονική περίοδος, γεωγραφική περίοδος στην οποία αντιστοιχεί το αντικείμενο</td>
</tr>
<tr>
<td>general_structure</td>
<td>general/structure</td>
<td>String</td>
<td>Οργάνωση της δομής του αντικειμένου</td>
</tr>
<tr>
<td>general_aggregationLevel_value</td>
<td>general/aggregationLevel/value</td>
<td>String</td>
<td>Μία από τις πιθανές επιλογές (functional granularity) του αντικειμένου</td>
</tr>
<tr>
<td>lifeCycle_version_string</td>
<td>lifeCycle/version/string</td>
<td>String</td>
<td>Η έκδοση του συγκεκριμένου αντικειμένου</td>
</tr>
<tr>
<td>lifeCycle_status_value</td>
<td>lifeCycle/status/value</td>
<td>String</td>
<td>Η κατάσταση του αντικειμένου</td>
</tr>
<tr>
<td>lifeCycle_contribute</td>
<td>lifeCycle/contribute</td>
<td>String</td>
<td>Σύνθετο στοιχείο το οποίο υποδεικνύει τις οντότητες που έχουν συνεισφέρει στο αντικείμενο</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>lifeCycle_contribute/entity</td>
<td>lifeCycle/contribute/entity</td>
<td>String</td>
<td>η ταυτότητα ή πληροφορίες σχετικά με την οντότητα που συνεισφέρει στο αντικείμενο</td>
</tr>
<tr>
<td>lifeCycle_contribute/date_date</td>
<td>lifeCycle/contribute/date/datetime</td>
<td>String τύπου χρονολογία-μήνας-μέρας-ώρας-λεπτά-δευτερόλεπτα</td>
<td>ημερομηνία συνεισφοράς</td>
</tr>
<tr>
<td>lifeCycle_contribute/date_description_string</td>
<td>lifeCycle/contribute/date/description/string</td>
<td>String</td>
<td>πληροφορίες σχετικά με την ημερομηνία συνεισφοράς</td>
</tr>
<tr>
<td>metaMetadata_identifier</td>
<td>metaMetadata/identifier</td>
<td>String</td>
<td>σύνθετο στοιχείο το οποίο αντιστοιχεί σε μοναδική έτυπη της οποίας προσδιορίζει την συγκεκριμένη καταγραφή μεταδεδομένων</td>
</tr>
<tr>
<td>metaMetadata_identifier/catalog</td>
<td>metaMetadata/identifier/catalog</td>
<td>String</td>
<td>σχήμα ονοματοδοσίας</td>
</tr>
<tr>
<td>metaMetadata_identifier/entry</td>
<td>metaMetadata/identifier/entry</td>
<td>String</td>
<td>αλφαριθμητικό ονοματοδοσίας που αντιστοιχεί στην τιμή της ετικέτας "identifier"</td>
</tr>
<tr>
<td>metaMetadata_contribute</td>
<td>metaMetadata/contribute</td>
<td>String</td>
<td>σύνθετο στοιχείο το οποίο υποδεικνύει τις οντότητες που επηρέασαν την κατάσταση του</td>
</tr>
<tr>
<td>metaMetadata_contribute/role_value</td>
<td>metaMetadata/contribute/role/value</td>
<td>Meta ex taos creator, validator</td>
<td>eidos sunneisfrofes</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>metaMetadata_contribute/entity</td>
<td>metaMetadata/contribute/entity</td>
<td>String</td>
<td>eta taoutityta h plhnneisfrofes schetik me ta ton taoutityta pou sunneisfroei sto antixeimenos</td>
</tr>
<tr>
<td>metaMetadata_contribute/dateDateTime</td>
<td>metaMetadata/contribute/dateDateTime</td>
<td>String tytopo chronologikas-mhnas-maria T epochesthous róleita</td>
<td>hmeromfríaka sunneisfrofes</td>
</tr>
<tr>
<td>metaMetadata_contribute/date_description_string</td>
<td>metaMetadata/contribute/date_description/string</td>
<td>String</td>
<td>plhnneisfrofes schetik me ta hmeromfría sunneisfrofes</td>
</tr>
<tr>
<td>metaMetadata_schema</td>
<td>metaMetadata/schema</td>
<td>String</td>
<td>to onoma kai h ékdoasa tis epísmes prootheímatos pou xhresiopòtheni sto an dynmatíaka sto stigmátopous metadeodoménoun</td>
</tr>
<tr>
<td>metaMetadata_language</td>
<td>metaMetadata/language</td>
<td>String</td>
<td>glóssasa pou xhresiopoiéita sto syrkeüméno stigmátopo metadeodoménoun</td>
</tr>
<tr>
<td>technical_format</td>
<td>technical/format</td>
<td>String</td>
<td>morfi twn tecknikwn xarakteristikwn pou periechéi to antixeímeno</td>
</tr>
<tr>
<td>technical_size</td>
<td>technical/size</td>
<td>String</td>
<td>méghisto tou antixeímenou se bytes</td>
</tr>
<tr>
<td>technical_location</td>
<td>technical/location</td>
<td>String</td>
<td>alfarithmikou pou xhresiopoiéita gia tna prósáfasi sto antixeímeno</td>
</tr>
<tr>
<td>technical_requirement_orComposite</td>
<td>technical/requirement/orComposite</td>
<td>String</td>
<td>swótheto stoixheio to opoio antisteiçei se omadopoihsh polliotwn tecknikwn prootheímatwn apanartétwn gia tna xhresi tou antixeímenou. To stoixheio xhresiopoietai an éstw kai ma apo tis tecknikes prootheímatas pou periechontai xanopoietai.</td>
</tr>
<tr>
<td>technical_requirement_orComposite_maximumVersion</td>
<td>technical/requirement/orComposite_maximumVersion</td>
<td>String</td>
<td>h mégiotai dynatí exódhosi tis tecknikías pou apaiteita stoan xhresi tou antixeímenou</td>
</tr>
<tr>
<td>technical_requirement_orComposite_minimumVersion</td>
<td>technical/requirement/orComposite_minimumVersion</td>
<td>String</td>
<td>h elxhísth dynatí exódhosi tis tecknikías pou apaiteita stoan</td>
</tr>
</tbody>
</table>
| technical_requirement_orComposite/name_value | technical/requirement/orComposite/name/value | if Type="operating system", then: pc-dos, ms-windows, macos, unix, multi-os, none
 if Type="browser" then: any, netscape, communicator, ms-internet, explorer, opera, amaya | το όνομα της απαιτούμενης τεχνολογίας που χρησιμοποιείται για το αντικείμενο |
| technical_requirement_orComposite/type_value | technical/requirement/orComposite/type/value | Μία από τις operating system, browser | η τεχνολογία που απαιτείται προκειμένου να χρησιμοποιηθεί το αντικείμενο |
| technical_InstallationRemarks | technical/InstallationRemarks | String | περιγραφή του τρόπου με τον οποίο εγκαθιστούμε το αντικείμενο |
| technical_OtherPlatformRequirement | technical/OtherPlatformRequirement | String | πληροφορίες σχετικά με άλλο λογισμικό και hardware που απαιτείται |
| technical_duration_description_string | technical/duration/description/string | String | περιγραφή χρονικής διάρκειας duration |
| technical_duration_duration | technical/duration/duration | String της μορφής P[yY][mM][dD][T|hH][nN][sS][sS][sS] where:
y = number of years (integer, > 0, not restricted)
m = number of months (integer, > 0, not restricted)
d = number of days (integer, > 0, not restricted)
h = number of hours (integer, > 0, not restricted)
n = number of χρόνος που απαιτείται για την εκτέλεση αντικειμένου σε δεδομένη ταχύτητα |
| Κεφάλαιο 5 – Μορφή και δομή φίλτρων αναζήτησης | minutes (integer, > 0, not restricted)
\(s = \text{number of seconds or fraction of seconds (integer, > 0, not restricted)} \)
\(\pi \chi \)
PT1M45S
Ένα λεπτό και 45 δευτερόλεπτα |
<p>| educational_interactivityLevel_value | educational/interactivityLevel/value | Μια εκ των active, expositive, mixed επικρατών στολ εκπαίδευσης που υποστηρίζεται από το αντικείμενο |
| educational_learningResourceType_value | educational/learningResourceType/value | Μια εκ των exercise, simulation, questionnaire, diagram, figure, graph, index, slide, table, narrative text, exam, experiment, problem, statement, self assessment, lecture συρρευμένος τύπος αντικειμένων. Ο πιο επικρατών τύπος θα είναι πρώτος |
| educational_interactivityLevel_value | educational/interactivityLevel/value | Μια εκ των very low, low, medium, high, very high ο βαθμός αλληλεπίδρασης που χαρακτηρίζει το αντικείμενο. Η αλληλεπίδραση στο περιεχόμενο αφορά στον βαθμό με τον οποίο ο εκπαιδευόμενος μπορεί να επηρεάσει την συμπεριφορά του αντικειμένου |
| educational_semanticDensity_value | educational/semanticDensity/value | Μια εκ των very low, low, medium, high, very high ο βαθμός περιεκτικότητας |
| educational_intendedEndUserRole_value | educational/intendedEndUserRole/value | Μια εκ των teacher, author, learner, manager κύριοι χρήστες για τους οποίους το αντικείμενο δημιουργήθηκε |
| educational_context_value | educational/context/value | Μια εκ των school, higher κόσμοι περιβάλλον για το οποίο προορίζεται το αντικείμενο και η |</p>
<table>
<thead>
<tr>
<th>Κεφάλαιο 5 – Μορφή και δομή ψάλτρων αναζήτησης</th>
</tr>
</thead>
<tbody>
<tr>
<td>educational_typicalAgeRange_string</td>
</tr>
<tr>
<td>educational_difficulty_value</td>
</tr>
<tr>
<td>educational_description_string</td>
</tr>
<tr>
<td>educational_language</td>
</tr>
<tr>
<td>rights_cost_value</td>
</tr>
<tr>
<td>rights_copyrightAndOtherRestrictions_value</td>
</tr>
<tr>
<td>rights_description_string</td>
</tr>
<tr>
<td>relation_entry</td>
</tr>
<tr>
<td>relation_entry/ispartof, haspart, isversionof, hasversion, isformatof, hasformat, references, isreferencedby, isbasedon, isbasisfor, requires, isrequiredby</td>
</tr>
<tr>
<td>relation_entry/relation_resource</td>
</tr>
</tbody>
</table>
Το Κεφάλαιο 5 – Μορφή και δομή φιλτρων αναζήτησης

<table>
<thead>
<tr>
<th>relation_entry/relation_resource/description_string</th>
<th>relation/resource/description/string</th>
<th>String</th>
<th>περιγραφή του στοιχείου αντικειμένου</th>
</tr>
</thead>
<tbody>
<tr>
<td>relation_entry/relation_resource/identifier</td>
<td>relation/resource/identifier</td>
<td></td>
<td>σύνθετο στοιχείο το οποίο αντιστοιχεί σε μοναδική ετικέτα που προσδιορίζει το στοιχείο αντικειμένου</td>
</tr>
<tr>
<td>relation_entry/relation_resource/identifier/catalog</td>
<td>relation/resource/identifier/catalog</td>
<td>String</td>
<td>σχήμα ονοματοδοσίας</td>
</tr>
<tr>
<td>relation_entry/relation_resource/identifier/entry</td>
<td>relation/resource/identifier/entry</td>
<td>String</td>
<td>αλφαριθμητικό ονοματοδοσίας που αντιστοιχεί στην τιμή της ετικέτας identifier</td>
</tr>
<tr>
<td>annotation_entry</td>
<td>Annotation</td>
<td></td>
<td>σύνθετο στοιχείο περιλαμβάνει σχόλια για την εκπαιδευτική χρήση του αντικειμένου και πληροφορίες για το πότε και από ποιον δημιουργήθηκαν τα σχόλια αυτά</td>
</tr>
<tr>
<td>annotation_entity</td>
<td>annotation/entity</td>
<td>String</td>
<td>οντότητα που δημιούργησε το σχόλιο</td>
</tr>
<tr>
<td>annotation_date_dateTime</td>
<td>annotation/date/dateTime</td>
<td>String</td>
<td>χρονολογία-μήνας-μέρα-Τ-ώρα-λεπτά-δευτέροι-έλεγχοι</td>
</tr>
<tr>
<td>annotation_date_description_string</td>
<td>annotation/date/description/string</td>
<td>String</td>
<td>περιγραφή σχετικά με την ημερομηνία δημιουργίας του σχολίου</td>
</tr>
<tr>
<td>annotation_description_string</td>
<td>annotation/description/string</td>
<td>String</td>
<td>το παρεχόμενο του annotation</td>
</tr>
<tr>
<td>classification_entry</td>
<td>Classification</td>
<td></td>
<td>σύνθετο στοιχείο το οποίο περιγράφει πως αποτυγχάνει ένα αντικείμενο σε ένα συγκεκριμένο σύστημα ταξινόμησης</td>
</tr>
<tr>
<td>classification_entry/purpose_value</td>
<td>classification/purpose/value</td>
<td></td>
<td>Μια εν λόγω discipline, idea, prerequisite, educational objective, accessibility, restrictions, educational level, skill level, security level, competency</td>
</tr>
<tr>
<td>classification_entry/description</td>
<td>classification/description/string</td>
<td>String</td>
<td>περιγραφή του αντικειμένου σχετικά με το</td>
</tr>
</tbody>
</table>
_string

classification_entry/keyword_string	classification/purpose	String	λέξεις κλειδιά, ψήφισες περιγραφικές του αντικειμένου, σχετικές με το δηλωθέν classification/purpose του συγκεκριμένου classification
classification_entry/taxonPathEntry	classification/taxonPath	σύνθετο στοιχείο το οποίο αποτελεί μονοπάτι ταξινόμησης σε συγκεκριμένο σύστημα ταξινόμησης	
classification_entry/taxonPathEntry/source_string	classification/taxonPath/source_string	String	το όνομα του συστήματος ταξινόμησης
classification_entry/taxonPathEntry/taxon_entry	classification/taxonPath/taxon	σύνθετο στοιχείο το οποίο συνδυάζεται με άλλα τέτοια στοιχεία συνθέτου μονοπάτι ταξινόμησης	
classification_entry/taxonPathEntry/taxon_entry/entry_string	classification/taxonPath/taxon/entry_string	String	η ετικέτα του taxon
classification_entry/taxonPathEntry/taxon_entry/id	classification/taxonPath/taxon/id	String	αναγνωριστής για το taxon, όπως για παράδειγμα αριθμός ή συνδιαστομή γραμματών που παρέχεται από την πηγή του taxonomy

5.6 Περίληψη

Στο κεφάλαιο αυτό περιγράφαμε τα φίλτρα τα οποία αναπτύξαμε και χρησιμοποιούμε προκειμένου να υποστηρίξουμε συναρτήσεις αναζήτησης στις αποθήκες υλικού. Περιγράφαμε τις δύο κατηγορίες φίλτρων καθώς και τον τρόπο με τον οποίο διαχειριζόμαστε τις πληροφορίες που περιέχονται σε ένα φίλτρο και τελικώς μας οδηγούν στο επερώτημα που θα εφαρμόσει στην αποθήκη υλικού. Στο επόμενο κεφάλαιο θα περιγράψουμε οι αποθήκες υλικού καθώς και οι προδιαγραφές και η σκοπιμότητα που εξυπηρετούν οι υπηρεσίες διαδικτύου που υλοποιήθηκαν προκειμένου να έχουμε απομακρυνμένη πρόσβαση στις αποθήκες υλικού Εκπαιδευτικών Αντικειμένων, Αντικειμένων Μαθημάτων και Αντικειμένων Αποτίμησης.
Κεφάλαιο 6

Η αποθήκη υλικού

6.1 Εισαγωγή

Στο κεφάλαιο αυτό θα παραγράψουμε τις αποθήκες υλικού για Αντικείμενα Μαθημάτων, Εκπαιδευτικά Αντικείμενα και Αντικείμενα Αποτίμησης. Στην παράγραφο 6.2 θα περιγράψουμε τις προδιαγραφές των υπηρεσιών διαδικτύου με τις οποίες επιτυγχάνουμε πρόσβαση για εισαγωγή, ανάκτηση και επεξεργασία των αντικειμένων ή τμημάτων των αντικειμένων που βρίσκονται στις αποθήκες υλικού. Στην παράγραφο 6.3, 6.4, 6.5 θα περιγράψουμε με λεπτομέρεια τις υπηρεσίες διαδικτύου που υλοποιήσαμε ειδικά για κάθε αποθήκη υλικού.

6.2 Λεπτομέρειες υλοποίησης των υπηρεσιών ιστού

Οι υπηρεσίες (web services) που υλοποιήσαμε μπορούν να ταξινομηθούν στις εξής κατηγορίες:

- **Search/Expose:** Τα web services αυτής της κατηγορίας ανακτούν από τις αποθήκες υλικού έγγραφα των οποίων τα μεταδεδομένα εκνοποιούν τα κριτήρια που δίνονται κάθε φορά.

- **Submit/Store:** Παρέχουν αντικείμενο (περιεχόμενο και μεταδεδομένα) σε αποθήκη υλικού προκειμένου την αποθήκευσή του.

- **Request/Deliver:** Τα web services της κατηγορίας αυτής επιτρέπουν σε χρήστη να ανακτήσει αντικείμενα ή στοιχεία των αντικειμένων που είναι αποθηκευμένα στις αποθήκες υλικού.
- Alert/Expose: Παρέχεται λειτουργικότητα για την ενημέρωση ενδιαφερόμενων χρηστών σχετικά με αλλαγές στο περιεχόμενο των αποθηκών υλικού. Κάθε φορά που στις αποθήκες υλικού αποθηκεύονται έγγραφα ή η τροποποιούνται υπάρχουν ώστε να περιλαμβάνουν μεταδεδομένα που υπαγόταν σε χάκοι παραμέτρους που έχει θέσει ο χρήστης (οι παράμετροι προσδιορίζοντας από το Boolean φίλτρο που παρέχει το alert, θα ακουλουθήσει ανάλυση), τότε ο χρήστης αυτός χαλάττας συγκεκριμένες υπηρεσίες διαδικτύου μπορεί να ενημερωθεί για τις αλλαγές στις αποθήκες υλικού.

Στην επόμενη ανάτητη έχουμε οργανώσει (ακουλουθώντας την παραπάνω κατηγοριοποίηση) και περιγράψει τις υπηρεσίες διαδικτύου που παρέχονται από τις αποθήκες υλικού των Εκπαιδευτικών Αντικειμένων, Αντικειμένων Μαθημάτων και Αντικειμένων Αποτίμησης.

Στο σημείο αυτό θα πρέπει να αναφέρουμε ότι διαχρονίζομε δύο καταστάσεις στις οποίες μπορεί να βρίσκεται ένα Εκπαιδευτικό Αντικείμενο, Αντικείμενο Μαθημάτων ή Αντικείμενο Αποτίμησης. Οι καταστάσεις αυτές είναι: EDITING και RENDERED.

Τα RENDERED αντικείμενα είναι διαθέσιμα μόνο για διάβασμα και μπορούν να χρησιμοποιηθούν για την ανάπτυξη υψηλότερου επιπέδου αντικειμένων. Αντίθετα τα EDITING αντικείμενα δεν βρίσκονται σε τελική μορφή και μπορούν να ενημερωθούν. Η διάκριση των δύο καταστάσεων στις οποίες μπορεί να βρίσκεται ένα αντικείμενο, κρίθηκε σκόπιμη ώστε να αποφευχθεί περιπλοκότητα στην ανάπτυξη υψηλότερου επιπέδου αντικειμένων από αντικείμενα χαμηλότερου επιπέδου. Σε περίπτωση για παράδειγμα, το κάποιο αντικείμενο χαμηλότερου επιπέδου χρησιμοποιείται σε αντικείμενα υψηλότερου επιπέδου, αν επιτρέπονταν η ενημέρωση του δεν θα υπήρχε εγγύηση σχετικά με το περιεχόμενο των αντικειμένων υψηλότερου επιπέδου. Γι’ αυτό επιτρέπεται η συμπεριλήψη αντικειμένων σε άλλα ανώτερα επιπέδου μόνο όταν βρίσκονται σε RENDERED κατάσταση ώστε να μην επιτρέπεται η περαιτέρω αλλαγή τους.

6.3 Περίγραφη υλοποίησης των υπηρεσιών ιστού της Αποθήκης υλικού

Εκπαιδευτικών Αντικειμένων

Σε αυτόν τον δείκτη, θα επικαλούμασε κάποιες λεπτομέρειες σχετικά με την αποθήκη υλικού των Εκπαιδευτικών Αντικειμένων (LOs). Η αποθήκη υλικού Εκπαιδευτικών Αντικειμένων διαχειρίζεται ανεξάρτητες και αυτόνομες μονάδες εκπαιδευτικού περιεχομένου οι οποίες διατίθενται για επαναχρησιμοποίηση σε πολλαπλά εκπαιδευτικά περιβάλλοντα. Κάθε Εκπαιδευτικό Αντικείμενο είναι συλλογή από Ψηφιακά Αντικείμενα εμπλουτισμένη με
κεφάλαιο 6 – η αποθήκη υλικού

η αποθήκη υλικού εκπαιδευτικών Αντικειμένων υλοποιήθηκε με την δημιουργία συλλογής (container) με την χρήση της Berkeley DB Xml. Παράλληλα έχει δημιουργηθεί μια συλλογή στην οποία αποθηκεύονται 'συναγερμοί' (η σημασιολογία και ο σκοπός τους εξυπηρετούν αναλύεται παρακάτω) οι οποίοι έχουν σύνδεση με την συλλογή των Εκπαιδευτικών Αντικειμένων.

Στις περιγραφές που ακολουθούν θα αναφερόμαστε στον όρο id, ο οποίος περιγράφει μοναδικά κάθε έγγραφο. Ο όρος αυτός αντιστοιχεί στην τιμή (attribute) ID που περιέχεται στο στοιχείο (element) mets του XML έγγραφου που αντιστοιχεί στην METS περιγραφή ενός Εκπαιδευτικού Αντικειμένου, Αντικειμένου Μαθήματος ή Αντικειμένου Αποτίμησης.

6.3.1 Search/Expose

6.3.1.1 Υπηρεσία αναζήτησης δίτιμης λογικής search_LO(LOMFilter, MPEG7Filter, semanticFilter)

Η αποθήκη υλικού Εκπαιδευτικών Αντικειμένων παρέχει ειδική υπηρεσία αναζήτησης με βάση ψήφισμα δίτιμης λογικής η οποία διαχειρίζεται επερωτήματα τα οποία συνδυάζουν τρία ψήφια:

- LOM φίλτρο το οποίο προσδιορίζει learning object metadata παραμέτρους, οι οποίες θα εξεταστούν, προκειμένου να ανακτηθούν τα Εκπαιδευτικά Αντικείμενα που ικανοποιούν τις παραμέτρους αυτές.

- MPEG7 φίλτρο το οποίο προσδιορίζει διαχειριστικές παραμέτρους, οι οποίες αφορούν στα Ψηφιακά Αντικείμενα (περιέχονται αναφορές των DOs μέσα σε LO), προκειμένου να επιστραφούν Εκπαιδευτικά Αντικείμενα LOs τα οποία περιέχουν Ψηφιακά Αντικείμενα που ικανοποιούν τις προϋποθέσεις.

- Semantic φίλτρο το οποίο προσδιορίζει σημασιολογικές παραμέτρους, οι οποίες αφορούν στα Ψηφιακά Αντικείμενα που περιέχονται στα Εκπαιδευτικά Αντικείμενα.

Κάθε Query αποτελείται από τουλάχιστον ένα από τα παραπάνω ψήφια. Η επιστρεφόμενη τιμή είναι μία λίστα από Εκπαιδευτικά Αντικείμενα LOs, τα οποία ικανοποιούν όσα από τα ψήφια περιέχονται στο Query.
Εικόνα 6-1: Δομή αιτήματος ανάκτησης Εκπαιδευτικών Αντικειμένων

Το LOM ψίχορο ‘πακετάρεται’ σε μήνυμα soap και αποστέλλεται στην αποθήκη υλικού Εκπαιδευτικών Αντικειμένων προκειμένου να υποστεί επεξεργασία και να μετατραπεί σε επαράτημα το οποίο εφαρμόζεται στην αποθήκη υλικού. Η αποθήκη υλικού Εκπαιδευτικών Αντικειμένων είναι υπεύθυνη για την αναζήτηση των Εκπαιδευτικών Αντικειμένων τα οποία υιοθετούν το LOM ψίχορο, όπως επίσης για τον συνδυασμό των αποτελεσμάτων αυτών με τα αποτελέσματα που προέρχονται από την αποθήκη υλικού Ψηφιακών Αντικειμένων και υιοθετούν τα MPEG7 και Semantic ψίχορα. Συγκεκριμένα, η λίστα των LOs που υιοθετεί το LOM ψίχορο, ελέγχεται και επιστρέφονται τα Εκπαιδευτικά Αντικείμενα που περιέχουν ids Ψηφιακών Αντικειμένων, τα οποία τυπίζονται με τα ids των Ψηφιακών Αντικειμένων τα οποία κανονοποιούν τα MPEG7 και Semantic ψίχορα, όταν αυτά εφαρμόζονται στην αποθήκη υλικού Ψηφιακών Αντικειμένων.

Πιο συγκεκριμένα: Δημιουργείται ένα hash set το οποίο περιλαμβάνει τα ids των Ψηφιακών Αντικειμένων DOs που υιοθετούν τα MPEG7 και Semantic ψίχορα. Στην συνέχεια διατρέχουμε τα Εκπαιδευτικά Αντικείμενα LOs που υιοθετούν το LOM ψίχορο. Όσα από τα Εκπαιδευτικά Αντικείμενα LOs περιέχουν ένα τουλάχιστον DO id(από τα DO ids που περιέχονται στο hash set) το συμπεριλαμβάνουμε στην λίστα των Εκπαιδευτικών Αντικειμένων LOs που υιοθετούν τα search services.

Το επόμενο διάγραμμα δραστηριότητας δείχνει τον τρόπο λειτουργίας της υπηρεσίας που περιγράφαμε:
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.
Κεφάλαιο 6 – Η αποθήκη υλικού

Search_LO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>booleanLOMfilter</td>
<td>Document</td>
<td>Έγγραφο το οποίο αντιστοιχεί στην xml αναπαράσταση του Boolean LOM filter που χρησιμοποιείται για την αναζήτηση εκπαιδευτικών αντικειμένων LOs. Η δομή και σημασιολογία των Boolean LOM φίλτρων δίνονται στο 5.3.</td>
</tr>
<tr>
<td>MPEG7filter</td>
<td>String</td>
<td>Φίλτρο για την αναζήτηση Ψηφιακών Αντικειμένων από την αποθήκη υλικού Ψηφιακών Αντικειμένων.</td>
</tr>
<tr>
<td>semanticFilter</td>
<td>String</td>
<td>Φίλτρο για την αναζήτηση Ψηφιακών Αντικειμένων από την αποθήκη υλικού Ψηφιακών Αντικειμένων.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search_LOReturn</td>
<td>Vector</td>
<td>Λίστα που περιέχει LOIds των Εκπαιδευτικών Αντικειμένων που ικανοποιούν τα δοθέντα φίλτρα.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον λυθηκό σφάλματος.</td>
</tr>
</tbody>
</table>

6.3.1.2 Υπηρεσία αναζήτησης ασαφούς λογικής fuzzy_search_LO(LOFuzzyFilter, MPEG7Filter, SemanticFilter)

Είναι ίδια υπηρεσία αναζήτησης με την περίπτωση της υπηρεσίας αναζήτησης δίτιμης λογικής search_LO, με την διαφορά ότι το LOMFuzzyFilter είναι ένα φίλτρο ασαφούς λογικής (τα φίλτρα ασαφούς λογικής περιγράφονται στην ενότητα 5.4).

Το διάγραμμα δραστηριότητας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας ως ισχύς:
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuzzyLOMfilter</td>
<td>Document</td>
<td>Έγχρωμο το οποίο αντιστοιχεί στην xml αναπαράσταση του Fuzzy LOM filter που χρησιμοποιείται για την αναζήτηση LOs.</td>
</tr>
<tr>
<td>MPEG7filter</td>
<td>String</td>
<td>Φίλτρο για την αναζήτηση Ψηφιακών Αντικειμένων</td>
</tr>
</tbody>
</table>
6.3.2 Submit/Store

Πριν ξεκινήσουμε την περιγραφή των υπηρεσιών της κατηγορίας αυτής, θα πρέπει να σημειώσουμε ότι για την διάκριση των καταστάσεων στις οποίες έχουμε έξοδα εξηγήσει ότι μπορεί να βρίσκεται ένα αντικείμενο, χρησιμοποιούμε το lifecycle/status/value Lom στοιχείο. Συγκεκριμένα, η αναφορά ‘editing state’ και ‘rendered state’ αφορά στις τιμές draft και final αντιστοίχως, της οποίας λαμβάνει το lifecycle/status/value Lom στοιχείο.

6.3.2.1 Υπηρεσία δημιουργίας Εκπαιδευτικού Αντικειμένου create_LO (LOdesc)

Δημιουργείται νέο Εκπαιδευτικό Αντικείμενο (Learning Object). Το νέο αντικείμενο LO είναι σε editing state εξ’ ορισμού. Η δημιουργία Εκπαιδευτικού Αντικειμένου παρέχεται στην λήψη περιγραφής Εκπαιδευτικού Αντικειμένου (METS έγγραφο που περιέχει LOM metadata), την ενημέρωση του αναγνωριστικού id του εγγράφου, την ενημέρωση της καταστάσεως του (το έγγραφο κατά τη διάδοση εισαγωγής βρίσκεται σε κατάσταση editing) και την αποθήκευση του στην αποθήκη εκπαιδευτικού υλικού (LO Repository). Επιστρέφεται το αναγνωριστικό id του νέου αντικειμένου ή μήνυμα σφάλματος στην περίπτωση που η υπηρεσία δεν εκτελείται επιτυχώς.

Το διάγραμμα δραστηριότήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:
Στον επόμενο πίνακα παραγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

create_LO

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>incomingDoc</td>
<td>Document</td>
<td>Λανθασμένος σε xml έγγραφο το οποίο περιλαμβάνει την xml αναπαράσταση του νέου εκπαιδευτικού αντικειμένου(METS έγγραφο συμπεριλαμβανομένου LOM μεταδοθέντος). Για λεπτομέρειες σχετικά με την χρήση του METS για την αναπαράσταση Εκπαιδευτικών Αντικειμένων ανατρέξτε στο 3.3 κεφάλαιο.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create_LOReturn</td>
<td>String</td>
<td>Αλφαριθμητικό που αναπαριστά το μοναδικό LOid που έχει δοθεί στο νέο αντικείμενο που δημιουργήθηκε.</td>
</tr>
</tbody>
</table>

Fault:
6.3.2.2 Υπηρεσία ενημέρωσης Εκπαιδευτικού Αντικειμένου update_LO (LOid, LOdesc)

Ενημερώνει Εκπαιδευτικό Αντικείμενο LO (με id = LOid) το οποίο βρίσκεται σε editing state. Αρχικά γίνεται έλεγχος της κατάστασης του αντικειμένου. Στην περίπτωση που το Εκπαιδευτικό Αντικείμενο LO βρίσκεται σε rendered state, δεν επιτρέπεται ενημέρωση και επιστρέφεται ένα μήνυμα σφάλματος. Στην συνέχεια λαμβάνει χώρα ο έλεγχος ταυτόχρονης πρόσβασης τον οποίο περιγράφαμε στο κεφάλαιο 4.2. Ο έλεγχος περιλαμβάνει την σύγκριση των αριθμών εκδόσεων (version numbers) του αντικειμένου LO που βρίσκεται αποθηκευμένο στην αποθήκη υλικού και του αντικειμένου LOdesc το οποίο θα το αντικαταστήσει/ενημερώσει. Στην περίπτωση που οι αριθμοί εκδόσεων είναι διαφορετικοί δεν επιτρέπεται η ενημέρωση του Εκπαιδευτικού Αντικειμένου και επιστρέφεται μήνυμα σφάλματος (για περισσότερες λεπτομέρειες σχετικά με τους αριθμούς εκδόσεων και τον έλεγχο ταυτόχρονης πρόσβασης ανατρέξτε στο κεφάλαιο 4.2). Στην περίπτωση που οι αριθμοί εκδόσεων των αντικειμένων είναι ίδιοι, αντικαθιστούμε το αντικείμενο LO με το ενημερωμένο αντικείμενο LOdesc. Τέλος αυξάνουμε τον αριθμό εκδόσεως του ενημερωμένου αντικειμένου LOdesc που έχει αποθηκευτεί στην αποθήκη υλικού. Στην περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας ως παρακάτω:
Στον επόμενο πίνακα παραγράφουμε τις παραμέτρους χλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

Update_LO

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOid</td>
<td>String</td>
<td>Το LOid του εκπαιδευτικού αντικειμένου το οποίο πρόκειται να ενημερωθεί.</td>
</tr>
<tr>
<td>newDoc</td>
<td>String</td>
<td>XML έγγραφο το οποίο παρέχεται ως αλφαριθμητικό (string) και περιλαμβάνει την ενημερωμένη XML περιγραφή (METS έγγραφο που περιλαμβάνει LOM μεταδεδομένα) του Εκπαιδευτικού Αντικειμένου. Για λεπτομέρειες σχετικά με την χρήση του METS για την αναπαράσταση Εκπαιδευτικών Αντικειμένων</td>
</tr>
</tbody>
</table>

116
Κεφάλαιο 6 – Η αποθήκη υλικού

ανατρέξτε στο 3.3 κεφάλαιο.

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update_LOReturn</td>
<td>String</td>
<td>αλφαριθμητικό (String) που περιλαμβάνει μήνυμα το οποίο περιγράφει ότι το service εκτελέστηκε σωστά.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.3.2.3 Υπηρεσία διαγραφής Εκπαιδευτικού Αντικειμένου delete_LO (LOid)

Διαγράφεται εκπαιδευτικό αντικείμενο LO (με id = LOid) το οποίο βρίσκεται σε editing state. Στην περίπτωση που το αντικείμενο δεν είναι σε editing state, δεν επιτρέπεται η διαγραφή και επιστρέφεται ένα μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτων που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας ως της:

117
Στον επόμενο πίνακα παραγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

delete_LO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOid</td>
<td>String</td>
<td>Το LOid του εκπαιδευτικού αντικειμένου το οποίο πρόκειται να διαγραφεί.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete_LOReturn</td>
<td>String</td>
<td>String το οποίο περιλαμβάνει μήνυμα το οποίο περιγράφει ότι το service εκτελέστηκε σωστά.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>
6.3.2.4 Υπηρεσία αλλαγής της κατάστασης Εκπαιδευτικού Αντικειμένου render_LO (LOid)

Επιτρέπει την αλλαγή της κατάστασης ενός Εκπαιδευτικού Αντικειμένου LO (LOid) το οποίο βρίσκεται σε editing state. Η υπηρεσία αλέγχει εάν το αντικείμενο βρίσκεται σε editing state και στην συνέχεια το μετατρέπεται σε rendered state. Στην περίπτωση που το αντικείμενο βρίσκεται ήδη σε rendered state, επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

![Diagram](image)
Κεφάλαιο 6 – Η αποθήκη υλικού

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>Service input:</th>
<th>Tύπος</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Όνομα παραμέτρου</td>
<td>Tύπος παραμέτρου</td>
<td>Περιγραφή</td>
</tr>
<tr>
<td>LOid</td>
<td>String</td>
<td>Το LOid του εκπαιδευτικού αντικειμένου του οποίου την αλλαγή κατάστασης επιθυμούμε.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service output:</th>
<th>Tύπος</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Όνομα παραμέτρου</td>
<td>Tύπος παραμέτρου</td>
<td>Περιγραφή</td>
</tr>
<tr>
<td>Render_LOReturn</td>
<td>String</td>
<td>String που περιλαμβάνει μήνυμα το οποίο ενημερώνει για την επιτυχημένη εκτέλεση του service.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fault:</th>
<th>Tύπος</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Όνομα παραμέτρου</td>
<td>Tύπος παραμέτρου</td>
<td>Περιγραφή</td>
</tr>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.3.2.5 Υπηρεσία δημιουργίας αντίγραφου ενός Εκπαιδευτικού Αντικειμένου
createCopyOfRendered_LO (LOid)

Δημιουργεί αντίγραφο Εκπαιδευτικού Αντικειμένου, το οποίο προσδιορίζεται με το όρισμα LOid και το οποίο βρίσκεται σε rendered κατάσταση. Το νέο Εκπαιδευτικό Αντικείμενο LO είναι σε editing state. Εάν το Εκπαιδευτικό Αντικείμενο του οποίου θέλουμε να δημιουργήσουμε αντίγραφο, δεν είναι σε rendered state, τότε δεν επιτρέπεται η αντιγραφή και επιστρέφεται μήνυμα σφάλματος. Στην περίπτωση επιτυχούς εκτέλεσης επιστρέφεται το id του νέου αντικειμένου. Χρησιμοποιώντας την υπηρεσία αυτή νέα Εκπαιδευτικά Αντικείμενα, τα οποία βασίζονται σε ήδη υπάρχοντα, μπορούν να δημιουργηθούν και στην συνέχεια να υποστούν επεξεργασία.

Το διάγραμμα δροστηρικτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:
Στον επόμενο πίνακα παρεγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>createCopyOfRendered_LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service input:</td>
</tr>
<tr>
<td>Όνομα παραμέτρου</td>
</tr>
<tr>
<td>LOid</td>
</tr>
</tbody>
</table>

| **Service output:** |
| **Όνομα παραμέτρου** | **Τύπος παραμέτρου** | **Περιγραφή** |
| createCopyOfRendered_LOReturn | String | Το String αυτό περιλαμβάνει το μοναδικό id του νέου αντικειμένου που δημιουργήθηκε. |
Κεφάλαιο 6 – Η αποθήκη υλικού

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.3.3 Request/Deliver

Ο χρήστης, χρησιμοποιώντας τη συνιστώσα με search_LO ή fuzzy_search_LO (τα αποτελέσματα είναι λίστες από ids), μπορεί να ανακτήσει αντικείμενα από την αποθήκη υλικού χρησιμοποιώντας το μοναδικό id του κάθε αντικειμένου. Η αποθήκη υλικού θα επιστρέψει το Mets έγγραφο (συμπεριλαμβανομένων των LOM μετадεδομένων) το οποίο περιγράφει το Εκπαιδευτικό Αντικείμενο.

6.3.3.1 Υπηρεσία ανάκτησης Εκπαιδευτικού Αντικειμένου get_LO (LOid)

Επιστρέφεται η περιγραφή του Εκπαιδευτικού Αντικειμένου (METS έγγραφο συμπεριλαμβανομένων των LOM metadata) το οποίο έχει id = LOid. Σε περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

![Diagram](image-url)
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

get_LO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOid</td>
<td>String</td>
<td>Το LOid του εκπαιδευτικού αντικειμένου που θέλουμε να ανακτήσουμε.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_LOReturn</td>
<td>String</td>
<td>Το METS έγγραφο σε μορφή String το οποίο αντιστοιχεί στην περιγραφή του εκπαιδευτικού αντικειμένου το οποίο ζητήθηκε.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.3.3.2 Υπηρεσία ανάκτησης των αναγνωριστικών ids των Ψηφιακών Αντικειμένων από τα οποία αποτελείται ένα Εκπαιδευτικό Αντικείμενο get_All_DO_in_LO (LOid)

Επιστρέφονται όλα τα αναγνωριστικά ids (Digital Objects identifiers) των Ψηφιακών Αντικειμένων από τα οποία αποτελείται το συγκεκριμένο Εκπαιδευτικό Αντικείμενο του οποίου το id είναι το LOid. Τα μεταδεδομένα και annotations των Ψηφιακών Αντικειμένων μπορούν να ανακτηθούν στην συνέχεια, με την χρήση των κατάλληλων υπηρεσιών της αποθήκης υλικού Ψηφιακών Αντικειμένων. Σε περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:
Στον επόμενο πίνακα παρεξηγάμουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loid</td>
<td>String</td>
<td>Το LOid του εκπαιδευτικού αντικειμένου του οποίου τα περιεχόμενα ψηφιακά αντικείμενα ζητήθηκαν.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_All_DO_in_LO</td>
<td>Vector</td>
<td>Λίστα που περιλαμβάνει τα DOids των ψηφιακών αντικειμένων που περιέχονται στο εκπαιδευτικό αντικείμενο του οποίου το LOid έχει δοθεί.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>
6.3.3.3 Υπηρεσία ανάκτησης LOM μεταδεδομένων get_LO_summary (list_of_LOid, list_of_LOMEElements)

Ανακτά τις τιμές των LOM μεταδεδομένων (metadata) τα οποία ορίζονται στο list_of LOMEElements. Η list_of_LOid περιέχει τα ids των LOs, των οποίων τα μεταδεδομένα εξετάζουμε. Ο σκοπός του συγκεκριμένου service είναι να δώσει την δυνατότητα ανάκτησης συγκεκριμένων μεταδεδομένων μίας ομάδας Εκπαιδευτικών Αντικειμένων στούς οποίους θέλουμε να υποστηρίζουν διάφορα σενάρια αλληλεπίδρασης. Στην περίπτωση αποτυχίας εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί παριμήνας τον τρόπο λειτουργίας της υπηρεσίας:

<table>
<thead>
<tr>
<th>get_LO_summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
</tr>
<tr>
<td>retrieve list of elements for a specified list of learning objects</td>
</tr>
<tr>
<td>error happens</td>
</tr>
<tr>
<td>send error message</td>
</tr>
<tr>
<td>end</td>
</tr>
</tbody>
</table>

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>get_LO_summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service input:</td>
</tr>
<tr>
<td>Όνομα παραμέτρου</td>
</tr>
<tr>
<td>LOIds</td>
</tr>
</tbody>
</table>
Κεφάλαιο 6 – Η αποθήκη υλικού

126

6.3.4 Alert/Expose

Στο σημείο αυτό πριν προχωρήσουμε στην παρουσίαση των υπηρετικών της alert/expose κατηγορίας, θα πρέπει να εξηγήσουμε την σημασιολογία και δομή των συναγερμών (alerts).

Κάθε συναγερμός αναπαριστάται με ένα xml έγγραφο που περιέχει την ακόλουθη πληροφορία: Το id κάθε συναγερμού, το οποίο είναι ένας μοναδικός identifier για την διάκριση των συναγερμών, ένα boolean φίλτρο, λίστα ids χρηστών καθώς και ημερομηνία που καταδεικνύει την χρονική στιγμή που ο συγκεκριμένος χρήστης έλεγξε τον συναγερμό για την εύρεση των Εκπαιδευτικών Αντικειμένων που εκπομπούν το φίλτρο. Τέλος περιέχονται και κάποια σχόλια τα οποία καταγράφονται από τον αρχικό εκδότη του συναγερμού, την στιγμή που δημιουργείται.

Παράδειγμα συναγερμού:

<table>
<thead>
<tr>
<th>lomElements</th>
<th>Vector</th>
<th>Λίστα από LOM elements μεταδεδομένων των οποίων τις τιμές (τις τιμές που έχουν στα εκπαιδευτικά αντικείμενα που δόθηκαν στην πρώτη παράμετρο) θέλουμε να εξετάσουμε.</th>
</tr>
</thead>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_LO_summaryR</td>
<td>Vector</td>
<td>Λίστα που περιλαμβάνει τα ζητούμενα μεταδεδομένα για κάθε ένα από τα ζητούμενα εκπαιδευτικά αντικείμενα. Κάθε καταχώρηση σε αυτή τη λίστα είναι μία άλλη λίστα η οποία περιλαμβάνει το LOid του εκπαιδευτικού αντικειμένου και τις τιμές που έχουν τα ζητούμενα LOM μεταδεδομένα σε αυτό το αντικείμενο.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>------------</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>
6.3.4.1 Υπηρεσία δημιουργίας συναγερμού alert_for_LO (LOMFilter, comment, userid)

Η υπηρεσία χρησιμοποιείται για την καταγραφή μίας αίτησης, η οποία αφορά στην ενημέρωση, γνωστοποίηση προς τον χρήστη που υπέβαλε το αίτημα, για την είσοδο νέου ή την μετατροπή ήδη υπάρχοντος Εκπαιδευτικού Αντικειμένου, τέτοιου ώστε να ικανοποιείται ένα συγκεκριμένο φίλτρο δύτημης λογικής (Boolean LOM filter). Το όρισμα LOMFilter αναφέρεται στο φίλτρο δύτημης λογικής (Boolean LOM filter), το οποίο θέλει ο χρήστης με id = userid να ικανοποιείται. Το όρισμα comment αφορά κάποια σχόλια από τον αντικειμένου του κρατής ή την ενημέρωση χρήστη θα γίνεται με την κλήση υπηρεσίας (αναφέρεται στο check_alert_for_LO που εξηγούμε παρακάτω) το οποίο επιτρέπει την ανάκτηση Εκπαιδευτικού Αντικειμένου τα οποία ικανοποιούν το φίλτρο δύτημης λογικής του συναγερμού. Σε περίπτωση οποτευχώς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.
Το διάγραμμα δραστηριότητας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>booleanLOMfilter</td>
<td>String</td>
<td>Το Boolean LOM φίλτρο το οποίο καθορίζει το είδος των εκπαιδευτικών αντικειμένων τα οποία υποστηρίζουν τον χρήστη που καταχώρησε το alert. Τα Boolean φίλτρα αναλύονται στην ενότητα 6.2</td>
</tr>
<tr>
<td>Comment</td>
<td>String</td>
<td>Περιγραφικά σχόλια για το alert.</td>
</tr>
<tr>
<td>Userid</td>
<td>string</td>
<td>Το id του χρήστη που καταχώρησε το alert.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert_for_LOReturn</td>
<td>string</td>
<td>String που περιλαμβάνει το μοναδικό alertid που δόθηκε στο νέο alert που καταχωρήθηκε.</td>
</tr>
</tbody>
</table>
Κεφάλαιο 6 – Η αποθήκη υλικού

6.3.4.2 Υπηρεσία επαναχρησιμοποίησης συναγερμού `reuse_alert_for_LO` (alertid, userid)

Η υπηρεσία χρησιμοποιείται για την καταχώριση νέου χρήστη (userid) σε έναν υπάρχον συναγερμό alert (alertid). Ο σκοπός που επιτυγχάνεται είναι ότι οι υπολογιστές περιλαμβάνουν παραπάνω από έναν χρήστη το οποίο επιτρέπει να ενδιαφέρονται για το ίδιο φίλτρο δίτιμης λογικής ενός συναγερμού. Αν ο χρήστης είναι ήδη καταχωρημένος στον συναγερμό τότε κατάλληλο μήνυμα σφάλματος επιστρέφεται. Σε περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>string</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

reuse_alert_for_LO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>alertid</td>
<td>string</td>
<td>Το alertid του alert στο οποίο ο χρήστης που ορίζεται από την δεύτερη παράμετρο θέλει να καταχωρηθεί.</td>
</tr>
<tr>
<td>userid</td>
<td>string</td>
<td>Το userid του χρήστη που θέλει να καταχωρηθεί στο alert.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>reuse_alert_for_LO</td>
<td>string</td>
<td>String που περιλαμβάνει μήνυμα το οποίο περιγράφει ότι το service εκτελέστηκε σωστά.</td>
</tr>
<tr>
<td>Return</td>
<td>string</td>
<td></td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>string</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.3.4.3 Υπηρεσία διαγραφής χρήστη από συναγερμό delete_alert_for_LO (alertid, userid)

Απομακρύνει τον χρήστη (userid) από τον συναγερμό (alertid). Στην περίπτωση που ο συναγερμός alert δεν έχει άλλους χρήστες τότε διαγράφεται και αυτό από την αποθήκη υλικού. Αν ο χρήστης δεν είναι καταχωρημένος στο alert τότε μήνυμα σφάλματος επιστρέφεται. Σε περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας ωστόσο:
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alertid</td>
<td>string</td>
<td>To alertid καθορίζει το alert από το οποίο θέλει να διαγράφει ο χρήστης με userid που καθορίζεται από την δεύτερη παράμετρο.</td>
</tr>
<tr>
<td>Userid</td>
<td>string</td>
<td>To userid του χρήστη ο οποίος είναι καταχωρημένος στο alert.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος</th>
<th>Περιγραφή</th>
</tr>
</thead>
</table>
6.3.4.4 Υπηρεσία ελέγχου συναγερμού check_alert_for_LO (alertid, checkNewObjects ,userid)

Η υπηρεσία χρησιμοποιείται για να ελέγξει την αποθήκη υλικού Εκπαιδευτικών Αντικειμένων προκειμένου να διαπιστωθεί η ύπαρξη ή μη, Εκπαιδευτικών Αντικειμένων LOs τα οποία υιοθετούν τον συναγερμό alert (alertid). Ο έλεγχος μπορεί να γίνει είτε σε όλη την αποθήκη υλικού, στην περίπτωση που το checkNewObjects flag είναι false, είτε σε set από νέα και ενημερωμένα αντικείμενα (αυτά τα αντικείμενα τα οποία δημιουργήθηκαν ή υπέστησαν αλλαγές από την τελευταία φορά που το alert ελέγχθηκε από τον χρήστη userid. Ο έλεγχος χρησιμοποιεί την καταχώρηση date που υπάρχει για κάθε χρήστη μέσα στο alert. Το service επιστρέφει λίστα από LOids τα οποία υιοθετούν το alert.. Σε περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριότητας που ακολουθεί παραγράφει τον τρόπο λειτουργίας της υπηρεσίας ως της:

<table>
<thead>
<tr>
<th>παραμέτρου</th>
<th>παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete_alert_for_LO</td>
<td>Return</td>
<td>string</td>
</tr>
</tbody>
</table>

String που περιλαμβάνει μήνυμα το οποίο ενημερώνει τον χρήστη για την επιτυχημένη εκτέλεση του service.

Fault:

<table>
<thead>
<tr>
<th>'Όνομα παραμέτρου</th>
<th>'Όνομα παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>string</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>
Στον επόμενο πίνακα παρεξηγήσουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

check_alert_for_LO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alerted</td>
<td>String</td>
<td>Το alertid του alert το οποίο θέλει να εξετάσει ο χρήστης που ορίζεται από την δεύτερη παράμετρο.</td>
</tr>
<tr>
<td>Userid</td>
<td>String</td>
<td>Το userid του χρήστη που θέλει να εξετάσει αν το alert στο οποίο είναι καταχωρημένος ικανοποιείται από κάποιο εκπαιδευτικό αντικείμενο.</td>
</tr>
<tr>
<td>checkNewObjects</td>
<td>Boolean</td>
<td>Η παράμετρος αυτή είναι Boolean flag. Εάν είναι 'true' τότε το service επιστρέφει μόνο τα αντικείμενα που ικανοποιούν το alert και έχουν δημιουργηθεί μετά από την τελευταία φορά που ο ίδιος χρήστης είχε εξετάσει το alert. Εάν το flag είναι 'false' τότε όλα τα εκπαιδευτικά αντικείμενα που ικανοποιούν το alert επιστρέφονται.</td>
</tr>
</tbody>
</table>
Κεφάλαιο 6 – Η αποθήκη υλικού

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>check_alert_for_LO</td>
<td>Return</td>
<td>Λίστα που περιέχει τα LOids των εκπαιδευτικών αντικειμένων που ανακαλύπτονται το alert.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.3.4.5 Υπηρεσία ανάκτησης των συναγερμών ενός χρήστη retrieve_user_alerts_for_LO (userid)

Ανακτάται όλοι οι συναγερμοί alerts που έχουν δημιουργηθεί από τον χρήστη με id = userid. Επιστρέφεται λίστα από <alertid, LOMFilter, comment>, περιλαμβάνοντας όλες τις πληροφορίες για τα alerts του χρήστη. Σε περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριότητας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

![DIAGRAMMA](retrieve_user_alerts_for_LO.png)
Στον επόμενο πίνακα παρουσιάζουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

Retrieve_user_alerts_for_LO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Userid</td>
<td>String</td>
<td>Το userid του χρήστη του οποίου θέλουμε να ανακτήσουμε τα alerts στα οποία είναι καταχωρημένος.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>retrieve_user_alerts_for_LO</td>
<td>Vector</td>
<td>Λίστα που περιλαμβάνει τις πληροφορίες του αρχείου στα alerts στα οποία είναι καταχωρημένος ο χρήστης που καθορίζεται από την παραμέτρου του service. Για κάθε alert το service επιστρέφει το alertid, το Boolean LOM filter και το comment.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.3.4.6 Υπηρεσία ανάκτησης όλων των συναγερμών της αποθήκης υλικού retrieve_all_alerts_for_LO()

Ανακτώντας όλα οι συναγερμοί alerts όλων των χρηστών. Επιστρέφεται λίστα από <alertid, userid*, LOMFilter, comment> περιλαμβάνοντας όλες τις πληροφορίες σχετικά με τα alerts που υπάρχουν στην αποθήκη υλικού. Σε περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

retrieve_all_alerts_for_LO

Service input:
No input parameter.

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>retrieve_all_alerts_for_LOReturn</td>
<td>Vector</td>
<td>Λίστα που περιλαμβάνει τις πληροφορίες που αφορούν στα alerts που είναι καταχωρημένα στην αποθήκη υλικού. Για κάθε alert το service επιστρέφει το alerted, τα userids των χρηστών που είναι καταχωρημένα στο alert, το Boolean LOM φίλτρο και το comment που περιέχει το alert.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σα σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

Οι παραπάνω υπηρεσίες μπορούν να υποστηρίζουν δύο σενάρια: To bottom-up και top-down authoring σενάρια. Κάθε φορά που ένας χρήστης ενδιαφέρεται για συγκεκριμένους τύπους Εκπαιδευτικών Αντικειμένων, καταχωρεί (χρησιμοποιώντας το κατάλληλο Authoring Studio Tool) έναν νέο συναγερμό alert (η υπηρεσία έχει αναπτυχθεί με το alert_for_LO
6.4 Περιγραφή υλοποίησης των υπηρεσιών ιστού της Αποθήκης υλικού
Αντικειμένων Μαθημάτων

Η αποθήκη υλικού των αντικειμένων μαθημάτων (COs) διαχειρίζεται διορισμένα αντικείμενα των οποίων η χρήση παρέχει ατομικές ή συλλογικές εκπαιδευτικές εμπειρίες σε επίσημα ή ανεπίσημα εκπαιδευτικά περιβάλλοντα. Τα αντικείμενα αυτά είναι ισοδύναμα Εκπαιδευτικών Αντικειμένων (LOs) που συμπεριλαμβάνουν επιπλέον εκπαιδευτικά μεταδεδομένα και πιθανώς πλοήγησης. Η αποθήκη υλικού των αντικειμένων μαθημάτων είναι μία συλλογή (container) της Berkeley DB Xml. Ισοδύναμα με την αποθήκη υλικού των Εκπαιδευτικών Αντικειμένων, έχουμε και στην περίπτωση των Αντικειμένων Μαθημάτων,
συναφεμούσι οι οποίοι είναι αποθηκευμένοι σε συλλογή που ‘επικοινωνεί’ με την συλλογή των Αντικειμένων Μαθημάτων (θα ακολουθήσει επεξήγηση στην παράγραφο της υλοποίησης των υπηρεσιών διαδικτύου).

Να διευκρινηθούμε ότι η editing/rendered κατάσταση των αντικειμένων υποδεικνύεται από την τιμή του LOM στοιχείου lifecycle/status/value. Η τιμή draft χρησιμοποιείται για έγγραφα που είναι σε editing κατάσταση ενώ η τιμή final για αυτά που είναι σε rendered κατάσταση. Έτσι η αλλαγή της κατάστασης ενός έγγραφου μπορεί να γίνει είτε με την χρήση του update (μεταβάλλοντας την τιμή του στοιχείου που περιγράφει μπροστά σε service είτε του rendered service που περιγράφονται στη συνέχεια. Επιπλέον χρησιμοποιώντας LOM φίλτρα μπορούμε να ανακτήσουμε έγγραφα που βρίσκονται στην μία ή στην άλλη κατάσταση.

6.4.1 Search/Expose

6.4.1.1 Υπηρεσία αναζήτησης δίτιμης λογικής search_CO (LOMFilter, checkLOs)

Η αποθήκη υλικού Αντικειμένων Μαθημάτων παρέχει υπηρεσία αναζήτησης δίτιμης λογικής η οποία διαχειρίζεται επαρκότητα (queries) τα οποία εκφράζονται με LOM φίλτρο το οποίο περιγράφει τις παραμέτρους των learning object metadata που θα εξεταστούν προκειμένου να επιστραφεί ένα Antikiemeno Μάθησης Courseware Object. Το πρώτο όρισμα είναι το LOMFilter (είναι το ίδιο φίλτρο με αυτό που χρησιμοποιείται στην περίπτωση των services αναζήτησης της αποθήκης υλικού εκπαιδευτικών αντικειμένων) που χρησιμοποιείται στην αναζήτηση και το δεύτερο όρισμα είναι ένα boolean flag που υποδεικνύει εάν το φίλτρο χρησιμοποιηθεί και για την ακόλουθη επικείμενη υλικού αντικειμένων που περιέχονται στα αντικείμενα μαθημάτων COs. Στην περίπτωση που το flag είναι false, τότε μόνο τα CO μεταδεδομένα λαμβάνονται υπ’ όψιν, και επιστρέφονται αντικείμενα μαθημάτων με LOM μεταδεδομένα τα οποία υποκοινωνούν τις προδιαγραφές του boolean φίλτρου. Εάν το flag είναι true, τότε επιστρέφονται επιπρόσθετα αντικείμενα μαθημάτων COs : αυτά τα οποία περιέχουν εκπαιδευτικά αντικείμενα LOs με μεταδεδομένα τα οποία υποκοινωνούν το φίλτρο, ακόμη και αν τα LOM μεταδεδομένα του αντικειμένου μαθήματος δεν το υποκοινωνούν (να υπενθυμίζουμε ότι ένα Antikiemeno Μαθήματος συνίσταται από ένα ή περαιτέρω Eπικεφαλής Αντικείμενα). Το LOMFilter ‘πακετάρεται’ σαν SOAP message και αποστέλλεται προς την αποθήκη υλικού αντικειμένων μαθημάτων, όπου κι υπάγεται σε επεξεργασία. Το αποτέλεσμα της επεξεργασίας θα είναι επαρκότητα το οποίο θα εφαρμοστεί στην αποθήκη υλικού. Η αποθήκη υλικού Αντικειμένων Μαθημάτων είναι υπεύθυνη για την
κεφάλαιο 6 – η αποθήκη υλικού

εύρεση των Αντικειμένων Μαθημάτων και την επιστροφή της λίστας με τα ids των COs που πληρούν τις προδιαγραφές που προαναφέρθηκαν. Σε περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριότητας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.
Κεφάλαιο 6 – Η αποθήκη υλικού

Search_CO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>booleanCOMfilter</td>
<td>Document</td>
<td>Έγγραφο το οποίο αντιστοιχεί στην xml αναπαράσταση του φίλτρου δίτιμης λογικής (Boolean LOM filter) που χρησιμοποιείται για την αναζήτηση COs. Η δομή και σημασιολογία των φίλτρων δίτιμης λογικής δίνονται στο 5.3. Η δομή και σημασιολογία των φίλτρων δίτιμης λογικής δίνονται στο 5.3.</td>
</tr>
<tr>
<td>checkCOs</td>
<td>Boolean</td>
<td>Boolean flag. Εάν είναι 'true' το φίλτρο εφαρμόζεται και στα Εκπαιδευτικά Αντικείμενα (LOs). Οποιοδήποτε Αντικείμενο Μάθησης (CO) περιλαμβάνει έστω και ένα από αυτά τα LOs τότε επιστρέφεται και αυτό ακόμη και αν από μόνο του δεν ικανοποιεί τις προδιαγραφές που έχει καθορίσει το φίλτρο.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search_COReturn</td>
<td>Vector</td>
<td>Λίστα που περιέχει CO ids των CO σε οποιαδήποτε το διαφέροντα φίλτρο.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.4.1.2 Υπηρεσία αναζήτησης ασαφούς λογικής fuzzy_search_CO (LOMFuzzyFilter, checkLOs)

Η υπηρεσία είναι όμοια με αυτήν που περιγράφαμε παραπάνω με την διαφορά ότι το LOMFuzzyFilter είναι φίλτρο ασαφούς λογικής (fuzzy filter) το οποίο περιλαμβάνει βάρη στους όρους που περιέχει (είναι το ίδιο φίλτρο με το fuzzyFilter που χρησιμοποιούμε στην περίπτωση της αποθήκης υλικού εκπαιδευτικών αντικειμένων fuzzy search LO). Το επιστρεφόμενο αποτέλεσμα είναι λίστα από CO ids συνοδευόμενα από το rank που προστίθεται για κάθε ένα από αυτά. Η πρώτη παράμετρος είναι το φίλτρο το οποίο θα εφαρμοστεί. Η δεύτερη είναι flag που υποδεικνύει εάν θα ληφθούν υπ’ όψιν τα Εκπαιδευτικά Αντικείμενα που περιέχονται σε κάθε Αντικείμενο Μάθημα. Εάν to checkLOS flag είναι false, τότε μόνο τα CO μεταδεδομένα εξετάζονται και τα ranks υπολογίζονται κάνοντας χρήση των κανόνων που
Κεφάλαιο 6 – Η αποθήκη υλικού

περιγράφονται για τα fuzzy φίλτρα. Στην περίπτωση που το checkLOs flag είναι true, τότε στο τελικό rank πρέπει να συμπεριληφθούν και τα ranks των LOs (τα οποία προκύπτουν από τον έλεγχο του φίλτρου πάνω στα μεταδεδομένα του LO) που περιέχονται στο CO.

Η φόρμουλα που χρησιμοποιείται προκειμένου να προκύψει το ranking στην περίπτωση που το flag είναι αληθές είναι η εξής:

\[
\text{Final Rank} = a_1 \times r + a_2 \times \left(r_1 + r_2 + \ldots + r_n \right) / n,
\]

όπου \(a_1\) και \(a_2\) είναι δύο πραγματικοί αριθμοί για τους οποίους \(a_1 + a_2 = 1\), και αναπαριστούν την σχετική σημασία του rank κάθε CO (αναφερόμαστε στο \(r\) της παραπάνω σχέσης) χωρίς να υπολογίζουμε τα LOs, και τους rank για κάθε LO που περιέχεται στο CO (αναφερόμαστε στα \(r_1, r_2, r_3 \ldots r_n\)). Το \(n\) είναι το πλήθος των LOs που περιέχονται στο CO.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτούργιας της υπηρεσίας κυτής:
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους χάλης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuzzyCOMfilter</td>
<td>Document</td>
<td>Τίμημαρο το οποίο αντιστοίχισε στην xml αναπαράσταση του Fuzzy LOM filter που χρησιμοποιείται για την αναζήτηση COs. Η δομή και σημασιολογία των φίλτρων αυτών δίνονται στο 6.2.2.</td>
</tr>
<tr>
<td>checkCOs</td>
<td>boolean</td>
<td>Boolean flag. Στην περίπτωση που είναι ‘true’ το φίλτρο εφαρμόζεται και στα εκπαιδευτικά αντικείμενα και το τελικό rank για κάθε αντικείμενο μαθήματος CO υπολογίζεται από τα ranks των εκπαιδευτικών αντικειμένων LOs που υπάρχουν στο CO συνδυασμένα με το rank που προκύπτει από την εφαρμογή του φίλτρου πάνω στο CO.</td>
</tr>
<tr>
<td>Weight</td>
<td>Float</td>
<td>Η παράμετρος αυτή αντιστοίχισε στην παράμετρο a1 που είδαμε στην φόρμουλα η οποία συνδυάζει το rank του αντικειμένου μάθησης με τα ranks των εκπαιδευτικών αντικειμένων που περιέχει. Η a2 παράμετρος της φόρμουλας προκύπτει από a2 = 1 - weight.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuzzy_search_COReturn</td>
<td>Vector</td>
<td>Λίστα που περιέχει <COid,rank> των COs που μοναδικοί τα δοθέντα φίλτρα καθώς και το rank τους.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>string</td>
<td>Μήνυμα σφάλματος που αντιστοίχισε στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

η 6.4.2 Submit/Store

Στις περιγραφές που ακολουθούν θα αναφερόμαστε στον όρο id, ο οποίος περιγράφει μοναδικά κάθε Αντικείμενο Μαθήματος. Ο όρος αυτός αντιστοιχεί στο γνώρισμα (attribute) ID που περιέχεται στο mets στοιχείο (element) του XML εγγράφου που αντιπροσωπεύει την METS περιγραφή του Αντικειμένου Μαθήματος. Επίσης σε αντιστοιχία με τα Εκπαιδευτικά
Αντικείμενα, τα Αντικείμενα Μαθήματων διαχωρίζονται και αυτά σε καταστάσεις rendred/editing. Η κατάσταση αντικειμένου μαθήματος προσδιορίζεται από την τιμή του LOM μεταδοτικού lifecycle/status/value. Να υπενθυμίσουμε, η τιμή draft αφορά editing κατάσταση ενώ η τιμή final αφορά κατάσταση rendered.

6.4.2.1 Υπηρεσία δημιουργίας Αντικειμένου Μαθήματος create_CO (Codesc)

Δημιουργείται νέο Αντικείμενο Μαθήματος Courseware Object. Το νέο CO είναι σε editing state αξιοπιστία. Η δημιουργία Αντικειμένου Μαθήματος περιλαμβάνει την λήψη περιγραφής Αντικειμένου Μαθήματος (METS περιλαμβάνοντας LOM metadata) την ενημέρωση του αναγνωστικού id του εγγράφου, την ενημέρωση της καταστάσης του (το έγγραφο κατά τη διάδοση εισαγωγής βρίσκεται σε καταστάσεις editing) και την αποθήκευση του στην αποθήκη υλικού Αντικειμένων Μαθήματων (CO Repository). Επιστρέφεται το αναγνωστικό id του νέου αντικειμένου ή μήνυμα σφάλματος στην περίπτωση που η υπηρεσία δεν εκτελείται επιτυχώς.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

![Diagram](chart.png)
Στον επόμενο πίνακα παρουσιάζουμε τις παραμέτρους χλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

6.4.2.2 Υπηρεσία ενημέρωσης Αντικειμένου Μαθήματος update_CO (Coid, Codesc)

Ενημερώνεται ένα Αντικείμενο Μαθήματος CO (με id = Coid) το οποίο βρίσκεται σε editing state. Αρχικά γίνεται έλεγχος της κατάστασης του αντικειμένου και στην περίπτωση που το Αντικείμενο Μαθήματος CO βρίσκεται σε rendered state, δεν επιτρέπεται ενημέρωση και επιστρέφεται μήνυμα σφάλματος. Στην συνέχεια λαμβάνει χώρα ο έλεγχος ταυτόχρονης πρόσβασης που περιγράφαμε στο κεφάλαιο 4.2. Ο έλεγχος περιλαμβάνει την σύγκριση των αριθμών εκδόσεων (version numbers) του αντικειμένου CO που βρίσκεται αποθηκευμένο στην αποθήκη υλικού και του αντικειμένου COdesc το οποίο θα το αντικαταστήσει/ενημερώσει. Στην περίπτωση που οι αριθμοί εκδόσεων είναι διαφορετικοί δεν επιτρέπεται η ενημέρωση του Αντικειμένου Μαθήματος και επιστρέφεται μήνυμα σφάλματος (για περισσότερες λεπτομέρειες σχετικά με τους αριθμούς εκδόσεων και τον έλεγχο ταυτόχρονης πρόσβασης ανατρέξτε στο κεφάλαιο 4.2). Στην περίπτωση που οι αριθμοί εκδόσεων των αντικειμένων είναι ίδιοι, αντικαθιστούμε το αντικείμενο CO με το ενημερωμένο
αντικείμενο COdesc. Τέλος συζητούμε τον αριθμό έκδοσης του ενημερωμένου αντικειμένου COdesc που έχει αποθηκευτεί στην αποθήκη υλικού. Στην περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιτρέπεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριότήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

![Diagram](image)

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.
Κεφάλαιο 6 – Η αποθήκη υλικού

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coid</td>
<td>String</td>
<td>Το COid του εκπαιδευτικού αντικειμένου το οποίο πρόκειται να ενημερωθεί.</td>
</tr>
<tr>
<td>newDoc</td>
<td>String</td>
<td>Χρήση έγγραφου το σχετικά με τον εκπαιδευτικό αντικειμένο. Περιλαμβάνει την σύνθεση των δεδομένων του αντικειμένου που αναφέρεται στο 3.3 κεφάλαιο.</td>
</tr>
</tbody>
</table>

Update_service

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>update_CO</td>
<td>String</td>
<td>Περιγράφει το σωστά εκτελέσθηκε service.</td>
</tr>
</tbody>
</table>

Fault

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.4.2.3 Υπηρεσία διαγραφής Αντικειμένου Μαθήματος delete_CO (Coid)

Διαγράφεται το CO με id = Coid, το οποίο βρίσκεται σε editing state. Στην περίπτωση που το CO δεν είναι σε editing state η διαγραφή δεν επιτρέπεται και μήνυμα σφάλματος επιστρέφεται.

Το διάγραμμα δραστηριότητας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

delete_CO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>COid</td>
<td>string</td>
<td>Το COid του αντικειμένου μαθήματος το οποίο πρόκειται να διαγραφεί.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete_COReturn</td>
<td>string</td>
<td>String το οποίο περιλαμβάνει μήνυμα το οποίο ενημερώνει για την επιτυχημένη εκτέλεση του service.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>string</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>
6.4.2.4 Υπηρεσία αλλαγής της κατάστασης Αντικειμένου Μαθήματος render_CO (Coid)

Επιτρέπει την αλλαγή κατάστασης ενός Αντικειμένου Μαθήματος CO (Coid) το οποίο βρίσκεται σε editing state, προκειμένου να καταστεί χρησιμοποιήσιμο από μαθητές. Η υπηρεσία ελέγχει εάν το αντικείμενο βρίσκεται σε editing state και στην συνέχεια το μετατρέπει σε rendered state. Στην περίπτωση που το αντικείμενο βρίσκεται ήδη σε rendered state, επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

![Diagram](image)

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας render_CO, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

Render_CO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>COid</td>
<td>string</td>
<td>Το COid του αντικειμένου μαθήματος του οποίου την αλλαγή κατάστασης επιθυμούμε.</td>
</tr>
</tbody>
</table>

Service output:
Κεφάλαιο 6 – Η αποθήκη υλικού

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Render_COReturn</td>
<td>string</td>
<td>String που περιλαμβάνει μήνυμα το οποίο ενημερώνει για την επιτυχημένη εκτέλεση του service.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>msg</td>
<td>string</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.4.2.5 Υπηρεσία δημιουργίας αντίγραφοι ενός Αντικειμένου Μαθήματος

createCopyOfRendered_CO (Coid)

Δημιουργεί αντίγραφο του Αντικειμένου Μαθήματος CO, το οποίο προσδιορίζεται με το όρισμα Coid και βρίσκεται σε rendered state. Το νέο CO είναι σε editing state. Εάν το CO του οποίου θέλουμε να δημιουργήσουμε αντίγραφο, δεν είναι σε rendered state, τότε δεν επιτρέπεται η αντιγραφή και επιστρέφεται μήνυμα σφάλματος. Στην περίπτωση επιτυχούς αντιγραφής επιστρέφεται το id του νέου CO που δημιουργήθηκε. Χρησιμοποιώντας την υπηρεσία αυτή νέα Αντικείμενα Μαθήματος, τα οποία βασίζονται σε ήδη υπάρχοντα, μπορούν να δημιουργηθούν και στην συνέχεια να υποστούν επεξεργασία.

Το διάγραμμα δραστηριότητας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:
Κεφάλαιο 6 – Η αποθήκη υλικού

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>COid</td>
<td>string</td>
<td>Το COid του αντικειμένου του οποίου θέλουμε να δημιουργήσουμε αντίγραφο.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>createCopyOfRendered_CO</td>
<td>string</td>
<td>Το String αυτό περιλαμβάνει το μοναδικό id του νέου αντικειμένου που δημιουργήθηκε.</td>
</tr>
</tbody>
</table>
Κεφάλαιο 6 – Η αποθήκη υλικού

6.4.3 Request/Deliver

Ο χρήστης αφού κάνει ανασκόπηση των καταγραφών των μεταδεδομένων που επιστρέφονται με ένα search_CO request, μπορεί να ανακτήσει κάποιο Αντικείμενο Μαθήματος (Courseware Object) από την αποθήκη υλικού Αντικειμένων Μαθημάτων χρησιμοποιώντας το μοναδικό id του αντικειμένου. Η αποθήκη υλικού Αντικειμένων Μαθημάτων αποστέλλει METS έγγραφο το οποίο περιλαμβάνει LOM metadatá που αντιστοιχεί στο Αντικείμενο Μαθήματος.

6.4.3.1 Υπηρεσία ανάκτησης Αντικειμένου Μαθήματος get_CO (Coid)

Επιστρέφονται τα μεταδεδομένα του Αντικειμένου Μαθήματος (METs έγγραφο συμπεριλαμβάνοντας των LOM metadata) το οποίο έχει id = Coid. Σε περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριότητας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>msg</td>
<td>string</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>COid</td>
<td>String</td>
<td>Το COid του αντικειμένου μαθήματος που θέλουμε να ανακτήσουμε.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_CO Return</td>
<td>String</td>
<td>Το METS έγγραφο σε μορφή String το οποίο αντιστοιχεί στην περιγραφή του αντικειμένου μαθήματος το οποίο ζητήθηκε.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.4.3.2 Υπηρεσία ανάκτησης των αναγνωριστικών των Εκπαιδευτικών Αντικειμένων από τα οποία αποτελείται ένα Αντικείμενο Μαθήματος get_All_LO_in_CO(COid):

Επιστρέφονται αναγνωριστικά ids (LOids) των Εκπαιδευτικών Αντικειμένων τα οποία συνθέτουν το συγκεκριμένο Αντικείμενο Μαθημάτων (COid). Τα μεταδεδομένα των Εκπαιδευτικών Αντικειμένων μπορεί αρχίζει να ανακτηθούν κάνοντας χρήση των κατάλληλων υπηρεσιών της αποθήκης υλικού Εκπαιδευτικών Αντικειμένων.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:
Στον επόμενο πίνακα παριστάμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

Get_All_LO_in_CO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>COid</td>
<td>String</td>
<td>Το COid του αντικειμένου μαθήματος του οποίου τα περιεχόμενα εκπαιδευτικά αντικείμενα ζητήθηκαν.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_All_LO_in_CO</td>
<td>Vector</td>
<td>Λίστα που περιλαμβάνει τα LOids των εκπαιδευτικών αντικειμένων που παρέχονται στο αντικείμενο μαθήματος του οποίου το COid έχει δοθεί.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>
6.4.3.3 Υπηρεσία ανάκτησης LOM μεταδεδομένων get_CO_summary (list_of COid, list_of LOMElements)

Ανακτά τιμές των LOM μεταδεδομένων (metadata) τα οποία ορίζονται στο list_of LOMElements. Η list_of COid περιέχει τα ids των Αντικειμένων Μαθημάτων COs, των οποίων τα μεταδεδομένα εξετάζουμε. Ο σκοπός της συγκεκριμένης υπηρεσίας είναι να δώσει την δυνατότητα ανάκτησης συγκεκριμένων μεταδεδομένων μιας ομάδας Αντικειμένων Μαθημάτων (Courseware Objects) ούτως ώστε να υποστηρίζουν διάφορα σενάρια αλληλεπίδρασης τα οποία περιλαμβάνουν παρουσίαση μεταδεδομένων Αντικειμένων Μαθημάτων μετά από κάποια αναζήτηση.

Το διάγραμμα δραστηριότητας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας:

Στον επόμενο πίνακα παραγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>Service input:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Όνομα παραμέτρου</td>
</tr>
<tr>
<td>COids</td>
</tr>
</tbody>
</table>
Κεφάλαιο 6 – Η αποθήκη υλικού

6.4.4 Alert/Expose

Προτού ξεκινήσουμε την περιγραφή των υπηρεσιών της κατηγορίας alert/expose να υπογραμμίσουμε ότι για τους συναγερμούς (alerts) της αποθήκης υλικού Αντικειμένων Μαθημάτων ισχύει ότι έχουμε περιγράψει για τους συναγερμούς (alerts) στην ενότητα Alert/Expose της αποθήκης υλικού Εκπαιδευτικών Αντικειμένων.

6.4.4.1 Υπηρεσία δημιουργίας συναγερμού alert_for_CO(LOMFilter,comment,userid)

Η υπηρεσία χρησιμοποιείται για την καταγραφή αίτησης, η οποία αφορά στην ενημέρωση, γνωστοποίηση ενός τον χρήστη που υπέβαλε το αίτημα, για την είσοδο νέου ή την μετατροπή ήδη υπάρχοντος αντικειμένου μαθήματος, τέτοιου ώστε να υιοθετείται ένα συγκεκριμένο Boolean LOM φίλτρο. Το όρισμα LOMFilter αναφέρεται στο Boolean LOM φίλτρο, το οποίο θέλει ο χρήστης με id = userid να υιοθετείται. Το όρισμα comment αφορά κάποια σχόλια τα οποία ενδεχομένως θα περιέχονται στον συναγερμό alert. Για να καταστήσουμε την εφαρμογή περισσότερο ευέλικτη, η ενημέρωση του χρήστη θα γίνεται...
μέσω ξεχωριστών services τα οποία επιτρέπουν την ανάκτηση αντικειμένων που υπαναχώρησαν το alert service.

Το διάγραμμα δραστηριοτήτων που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>booleanLOMfilter</td>
<td>String</td>
<td>Το Boolean LOM φίλτρο το οποίο καθορίζει το είδος των αντικειμένων μαθημάτων τα οποία υπαναχώρησαν τον χρήστη που καταχώρησε το alert.</td>
</tr>
<tr>
<td>comment</td>
<td>String</td>
<td>Περιγραφικά σχόλια για το alert.</td>
</tr>
<tr>
<td>Userid</td>
<td>String</td>
<td>Το id του χρήστη που καταχώρησε το alert.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
</table>
| Alert_for_CORetur | String | String που περιλαμβάνει το μοναδικό alertid που }
6.4.4.2 Υπηρεσία επαναχρησιμοποίησης συναγερμού reuse_alert_for_CO (alertid, userid)

Η υπηρεσία χρησιμοποιείται για την καταχώριση νέου χρήστη (userid) σε ένα ήδη υπάρχον συναγερμό alert (alertid). Ο σκοπός που επιτυγχάνεται είναι ότι υποκοπούνται παραπάνω από έναν χρήστης οι οποίοι μπορεί να ενδιαφέρονται για το ίδιο φίλτρο δίτιμης λογικής (boolean filter) ενός alert (το οποίο κάποιος άλλος έχει ήδη δημιουργήσει). Αν ο χρήστης είναι ήδη καταχωρημένος στο alert τότε μήνυμα σφάλματος επιστρέφεται. Σε περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

<table>
<thead>
<tr>
<th>Ονοματοποιημένος</th>
<th>Τύπος</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

δόθηκε στο νέο alert που καταχωρήθηκε.
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

reuse_alert_for_CO

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alerted</td>
<td>String</td>
<td>Το alertid του alert στο οποίο ο χρήστης που ορίζεται από την δεύτερη παράμετρο θέλει να καταχωρηθεί.</td>
</tr>
<tr>
<td>Userid</td>
<td>String</td>
<td>Το userid του χρήστη που θέλει να καταχωρηθεί στο alert.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service input:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service output:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.4.4.3 Υπηρεσία διαγραφής χρήστη από συναγερμό delete_alert_for_LO

Απομακρύνει τον χρήστη user_id από τον συναγερμό alert με αναγνωριστικό alertid. Στην περίπτωση που το alert δεν έχει καταχωρημένους χρήστες τότε διαγράφεται και αυτό από την αποθήκη υλικού. Αν ο χρήστης δεν είναι καταχωρημένος στον συναγερμό (alert) επιστρέφεται μήνυμα σφάλματος. Στην περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας ευθύς:
Στον επόμενο πίνακα παρεχόμαστε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

delete_alert_for_CO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alerted</td>
<td>string</td>
<td>Το alertid καθορίζει το alert από το οποίο θέλει να διαγράφει ο χρήστης με userid που καθορίζεται από την δεύτερη παράμετρο.</td>
</tr>
<tr>
<td>Userid</td>
<td>string</td>
<td>Το userid του χρήστη ο οποίος είναι καταχωρημένος στο alert.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete_alert_for_CO</td>
<td>string</td>
<td>String που περιλαμβάνει μήνυμα το οποίο ενημερώνει τον χρήστη για την επιτυχημένη εκτέλεση του service.</td>
</tr>
</tbody>
</table>
Κεφάλαιο 6 - Η αποθήκη υλικού

Κεφάλαιο 6 – Η αποθήκη υλικού

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>string</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.4.4.4 Υπηρεσία ελέγχου συναγερμού check_alert_for_CO(alertid, checkNewObjects, userid, checkLOs)

Η υπηρεσία χρησιμοποιείται για να ελέγξει την αποθήκη υλικού Αντικειμένων Μαθημάτων προκειμένου να διαπιστωθεί η ύπαρξη ή μη, Αντικειμένων Μαθημάτων τα οποία ικανοποιούν τον συναγερμό alert (alertid). Ο έλεγχος μπορεί να γίνει είτε σε ολόκληρη την αποθήκη υλικού, στην περίπτωση που η Boolean παράμετρος checkNewObjects είναι ψευδής, είτε σε ομάδες από νέα ή ενημερωμένα αντικείμενα (αυτά τα αντικείμενα τα οποία δημιουργήθηκαν ή υπάρχουν αλλαγές από την τελευταία φορά που το alert ελέγχθηκε από τον χρήστη userid. Ο έλεγχος χρησιμοποιεί την καταχώρηση date που υπάρχει για κάθε χρήστη μέσα στο alert). Τέλος υπάρχει μία ακόμη boolean παράμετρος (checkLOs) η οποία όταν είναι αληθής υποδεικνύει την εξέταση και των Εκπαιδευτικών Αντικειμένων που παρέχονται σε ένα Αντικείμενο Μαθήματος. Ετσι έστω κι ένα Εκπαιδευτικό Αντικείμενο να ικανοποιεί το φίλτρο, το Αντικείμενο Μαθήματος θα εξακολουθεί να ικανοποιεί το φίλτρο, ακόμη κι αν τα μεταδεδομένα του αυτά καθ’ αυτά δεν το ικανοποιούν. Στην περίπτωση που η παράμετρος είναι ψευδής έλεγχονται και επιστρέφονται μόνο τα Αντικείμενα Μαθήματος που ικανοποιούν το φίλτρο. Η υπηρεσία επιστρέφει λίστα από Αντικείμενα Μαθημάτων τα οποία ικανοποιούν το φίλτρο του alert.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:
Στον επόμενο πίνακα παραγγέλουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>Όνομα παράμετρου</th>
<th>Τύπος παράμετρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alertid</td>
<td>String</td>
<td>Το alertid του alert το οποίο θέλει να εξετάσει ο χρήστης που ορίζεται από την δεύτερη παράμετρο.</td>
</tr>
<tr>
<td>Userid</td>
<td>String</td>
<td>Το userid του χρήστη που θέλει να εξετάσει αν το alert στο οποίο είναι καταχωρημένος υποστηρίζεται από κάποιο επιπολακτικό αντικείμενο.</td>
</tr>
</tbody>
</table>
checkNewObjects Boolean

Η παράμετρος αυτή είναι Boolean flag. Εάν είναι ‘true’ τότε το service επιστρέφει μόνο τα αντικείμενα που υκαλοποιούν το alert και έχουν δημιουργηθεί μετά από την τελευταία φορά που ο ίδιος χρήστης είχε εξετάσει το alert. Εάν το flag είναι ‘false’ τότε όλα τα εκπαιδευτικά αντικείμενα που υκαλοποιούν το alert επιστρέφονται.

<p>| Service output: |</p>
<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check_alert_for_C</td>
<td>Vector</td>
<td>Λίστα που περιέχει τα COids των εκπαιδευτικών αντικειμένων που υκαλοποιούν το alert.</td>
</tr>
</tbody>
</table>

<p>| Fault: |</p>
<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.4.4.5 Υπηρεσία ανάκτησης των συναγερμών ενός χρήστη

reuse_user_alert_for_CO(userid)

Ανακτώντας όλα τους συναγερμοί alerts που έχουν δημιουργηθεί από τον χρήστη με id = userid. Επιστρέφεται λίστα από <alertied, LOMFilter, comment>, περιλαμβάνοντας πληροφορίες για τα alerts του χρήστη. Στην περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:
Στον επόμενο πίνακα παρεχόμενε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>Retrieve_user_alerts_for_CO</th>
<th>Service input:</th>
<th>Service output:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Όνομα παραμέτρου</td>
<td>Τύπος παραμέτρου</td>
<td>Περιγραφή</td>
</tr>
<tr>
<td>Userid</td>
<td>String</td>
<td>Το userid του χρήστη του οποίου θέλουμε να ανακτήσουμε τα alerts στα οποία είναι καταχωρημένος.</td>
</tr>
<tr>
<td>retrieve_user_alerts_for_COReturn</td>
<td>Vector</td>
<td>Λίστα που περιλαμβάνει τις πληροφορίες που αφορούν στα alerts στα οποία είναι καταχωρημένος ο χρήστης που καθορίζεται από την παράμετρο της υπηρεσίας. Για κάθε alert η υπηρεσία επιστρέφει το alertid, το Boolean LOM filter και το comment.</td>
</tr>
<tr>
<td>Fault:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Όνομα παραμέτρου</td>
<td>Τύπος παραμέτρου</td>
<td>Περιγραφή</td>
</tr>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον ισχυρό σφάλματος.</td>
</tr>
</tbody>
</table>
6.4.4.6 Υπηρεσία ανάκτησης όλων των συναγερμών της αποθήκης υλικού

retrieve_all_alerts_for_LO()

Ανακτώνται όλοι οι συναγερμοί alerts των χρηστών. Επιστρέφεται λίστα από <alertid, userid*, LOMFilter, comment> περιλαμβάνοντας όλες τις πληροφορίες που αφορούν τα alerts που υπάρχουν στην αποθήκη υλικού.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

retrieve_all_alerts_for_CO	

Service input:	No input parameter.
Service output:	

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>retrieve_all_alerts_for_COReturn</td>
<td>Vector</td>
<td>Λίστα που περιλαμβάνει τις πληροφορίες που αφορούν στα alerts που είναι καταχωρημένα στην αποθήκη υλικού. Για κάθε alert το service επιστρέφει με την μορφή xml εγγράφου, το alertid, τα userids των χρηστών που είναι καταχωρημένα στο alert, το</td>
</tr>
</tbody>
</table>
Κεφάλαιο 6 – Η αποθήκη υλικού

6.5 Περιγραφή υλοποίησης των υπηρεσιών ιστού της Αποθήκης υλικού

Αντικειμένων Αποτίμησης

Το κεφάλαιο αυτό παρουσιάζει την αποθήκη υλικού για τα Αντικείμενα Αποτίμησης. Να υπονοηθούμε ότι η αποθήκη υλικού των Αντικειμένων Αποτίμησης διαχειρίζεται Αντικείμενα Αποτίμησης τα οποία αποτελούνται από METS περιγραφή και QTI περιγραφή.

Η αποθήκη υλικού των Αντικειμένων Αποτίμησης έχει υλοποιηθεί με τρεις συλλογές (container). Η μία συλλογή χρησιμοποιείται για την αποθήκευση, διαχείριση, ανάκτηση της METS περιγραφής των Αντικειμένων Αποτίμησης. Οι άλλες δύο συλλογές χρησιμοποιούνται για την αποθήκευση, διαχείριση και ανάκτηση των QTI περιγραφών των Αντικειμένων Αποτίμησης (ένας container για Item, άλλος για Test περιγραφή).

Οι υπηρεσίες μέσω των οποίων διαχειριζόμαστε την αποθήκη υλικού έχουν κατηγοριοποιηθεί με βάση το μοντέλο Search/Expose, Submit/Store, και Request/Deliver. Να επαναλάβουμε ότι για την κατάσταση (EDITING ή RENDERED) ενός Αντικειμένου Αποτίμησης (Assessment Objects) χρησιμοποιούμε το LOM στοιχείο lifecycle/status/value. Συγκεκριμένα η τιμή ‘draft’ για το στοιχείο χρησιμοποιείται για να υποδείξει ότι το αντικείμενο αποτίμησης είναι σε EDITING κατάσταση. Η τιμή ‘final’ χρησιμοποιείται για να υποδείξει την RENDERED κατάσταση ενός Αντικειμένου Αποτίμησης. Επιπρόσθετα το LOM στοιχείο educational/learningResourceType χρησιμοποιείται για να υποδείξει τον τύπο του Αντικειμένου Αποτίμησης: Η τιμή ‘exercise’ χρησιμοποιείται για να αναπαραστήσει απλές ερωτήσεις (assessment items) και η τιμή ‘questionnaire’ χρησιμοποιείται για να αναπαραστήσει σύνθετα ερωτηματολόγια (assessment tests).
6.5.1 Search/Exposé

6.5.1.1 Υπηρεσία αναζήτησης δίτιμης λογικής search_AO(Boolean LOM filter, searchFor)

Η υπηρεσία διαδικτύου χρησιμοποιείται για την αναζήτηση Αντικειμένων Αποτίμησης που υπάρχουν υπό ένα φίλτρο δίτιμης λογικής. Η παράμετρος Boolean LOM filter αποτελεί το φίλτρο δίτιμης λογικής το οποίο υπόκειται σε επεξεργασία και μετατρέπεται σε επερώτημα της αποθήκης υλικού Αντικειμένων Αποτίμησης. Η παράμετρος SearchFor καθορίζει εάν το φίλτρο θα εφαρμοστεί σε όλα τα Αντικείμενα Αποτίμησης, μόνο στα assessment items ή μόνο στα assessment tests.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

![Diagram](image-url)
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

Search_AO

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>booleanLOMfilter</td>
<td>Document</td>
<td>Αντιστοιχεί στο xml έγγραφο το οποίο αντιστοιχεί στην xml αναπαράσταση του Boolean LOM φίλτρου το οποίο χρησιμοποιείται για την αναζήτηση αντικειμένων αποτίμησης που ικανοποιούν τις προδιαγραφές που ορίζει το φίλτρο. Η δομή και σημασιολογία των Boolean LOM φίλτρων δίνονται στο κεφάλαιο…</td>
</tr>
<tr>
<td>searchFor</td>
<td>String</td>
<td>Ορίζει τον τύπο των αντικειμένων αποτίμησης που θα αναζητηθούν. Αν η τιμή της παραμέτρου είναι 'test', μόνο τα assessments tests που ικανοποιούν το Boolean φίλτρο θα επιστραφούν. Εάν η τιμή είναι 'item', μόνο τα assessment items που ικανοποιούν το Boolean φίλτρο επιστρέφονται. Στην περίπτωση που η τιμή της παραμέτρου είναι 'all' τότε και τα assessment tests και assessment items επιστρέφονται.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search_AOReturn</td>
<td>Vector</td>
<td>Λίστα που περιέχει AOIds των αντικειμένων αποτίμησης που ικανοποιούν το φίλτρο</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.5.1.2 Υπηρεσία αναζήτησης ασαφούς λογικής fuzzy_search_AO(Fuzzy LOM Filter, searchFor)

Γίνει παρόμοια υπηρεσία με την υπηρεσία αναζήτησης δίτιμης λογικής search_AO, με την διαφορά ότι το φίλτρο που εφαρμόζεται στην αποθήκη υλικού είναι φίλτρο ασαφούς λογικής.
Το αποτέλεσμα της υπηρεσίας είναι η ανάκτηση αναγνωριστικών id των αντικειμένων καθώς και της αποτίμησης rank η οποία προκύπτει από εφαρμογή του φίλτρου σε κάθε αντικείμενο.

Το διάγραμμα δραστηριότητας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.
Κεφάλαιο 6 – Η αποθήκη υλικού

6.5.2 Submit/Store

6.5.2.1 Υπηρεσία δημιουργίας Αντικειμένου Αποτίμησης create_AO
(incomingDocMETS, incomingDocQTI)

Δημιουργείται νέο Αντικείμενο Αποτίμησης AO. Το νέο AO είναι σε editing κατάσταση εξ ορισμού. Η δημιουργία AO περιλαμβάνει την λήψη METS περιγραφής (METS έγγραφο που περιλαμβάνει LOM μεταδεδομένα) καθώς και QTI περιγραφής και την αποθήκευσή τους στην αποθήκη υλικού Αντικειμένων Αποτίμησης. Η QTI περιγραφή που αποθηκεύεται στην αποθήκη υλικού λαμβάνει το ίδιο id με αυτό που λαμβάνει η METS περιγραφή του

<table>
<thead>
<tr>
<th>Όνομα Παραμέτρου</th>
<th>Τύπος Παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuzzyLOMfilter</td>
<td>Document</td>
<td>Λαμβάνει το xml αναπαράσταση του Fuzzy LOM που χρησιμοποιείται για την αναζήτηση αντικειμένων αποτίμησης. Η δομή και σημασιολογία των Fuzzy LOM φίλτρων δίνονται στο κεφάλαιο 5.3</td>
</tr>
<tr>
<td>searchFor</td>
<td>string</td>
<td>Ορίζει τον τύπο των αντικειμένων που θα αναζητηθούν. Αν η τιμή της παράμετρου είναι ‘test’, μόνο αντικείμενα tests αντιστοιχεί στο εγγράφο. Εάν η τιμή είναι ‘item’, μόνο αντικείμενα item αντιστοιχείσαε. Στην περίπτωση που η τιμή της παραμέτρου είναι ‘all’, τότε τα άλλα και τα αντικείμενα assessment επιστρέφονται.</td>
</tr>
<tr>
<td>fuzzy_search_AOReturn</td>
<td>Vector</td>
<td>Λίστα που περιέχει <AOid,rank> των αντικειμένων αποτίμησης.</td>
</tr>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αποτελεί τον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>
Κεφάλαιο 6 – Η αποθήκη υλικού

αντικειμένου. Επιστρέφεται το αναγνωριστικό id του νέου αντικειμένου. Σε πρόταση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

create_AO

<table>
<thead>
<tr>
<th>Service input:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Όνομα Παραμέτρου</td>
</tr>
<tr>
<td>incomingDocMETS</td>
</tr>
</tbody>
</table>
Κεφάλαιο 6 – Η αποθήκη υλικού

3.3.

incomingDocQTI Document Λανθασμένο σε xml έγγραφο το οποίο περιλαμβάνει την xml αναπαράσταση του περιεχομένου ενός αντικειμένου αποτίμησης σε QTI.

<table>
<thead>
<tr>
<th>Όνομα Παραμέτρου</th>
<th>Τύπος Παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>create_AOReturn</td>
<td>string</td>
<td>String που αναπαριστά το μοναδικό AOid που έχει δοθεί στο νέο αντικείμενο αποτίμησης που δημιουργήθηκε. Το AOid είναι επίσης αυτό που χρησιμοποιείται για να αναπαραστήσει μοναδικά το αντίστοιχο QTI xml έγγραφο.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Όνομα Παραμέτρου</th>
<th>Τύπος Παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>string</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.5.2.2 Υπηρεσία ενημέρωσης Αντικειμένου Αποτίμησης update_AO(AOid, newDocMETS, newDocQTI)

Ενημερώνει ένα Αντικείμενο Αποτίμησης AO (με id = AOid) το οποίο βρίσκεται σε editing state. Στην περίπτωση που το AO βρίσκεται σε rendered state, δεν επιτρέπεται ενημέρωση και μήνυμα σφάλματος επιστρέφεται. Στην συνέχεια λαμβάνει χώρα ο έλεγχος ταυτόχρονης πρόσβασης που περιγράφεται στο κεφάλαιο 4.2. Ο έλεγχος περιλαμβάνει την σύγκριση των αριθμών εκδόσεων (version numbers) της METS περιγραφής του αντικειμένου AO που βρίσκεται αποθηκευμένο στην αποθήκη υλικού και της περιγραφής METS του αντικειμένου newDocMETS το οποίο θα αντικαταστάθηκε/ενημερώθηκε το αντικείμενο AO. Στην περίπτωση που οι αριθμοί εκδόσεων είναι διαφορετικοί δεν επιτρέπεται η ενημέρωση του Αντικειμένου Αποτίμησης και επιστρέφεται μήνυμα σφάλματος (για περισσότερες λεπτομέρειες σχετικά με τους αριθμούς εκδόσεων και τον έλεγχο ταυτόχρονης πρόσβασης ανατρέξτε στο κεφάλαιο 4.2). Στην περίπτωση που οι αριθμοί εκδόσεων των αντικειμένων είναι ίδιοι, αντικαθιστούμε την METS και QTI περιγραφή του αντικειμένου AO με τις ενημερωμένες QTI και METS περιγραφές (newDocQTI και newDocMETS αντίστοιχα). Τέλος υποθέτουμε τον αριθμό έκδοσης της ενημερωμένης METS περιγραφής που έχει αποθηκευτεί. Στην περίπτωση ανεπιτυχούς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.
Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>update_AO</th>
</tr>
</thead>
</table>

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος Παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOID</td>
<td>string</td>
<td>Το AOID του αντικειμένου αποτύπωσης το οποίο πρόκειται να ενημερωθεί...</td>
</tr>
</tbody>
</table>
Κεφάλαιο 6 – Η αποθήκη υλικού

6.5.2.3 Υπηρεσία διαγραφής Αντικειμένου Αποτίμησης delete_AO(AOid)

Διαγράφεται το Αντικείμενο Αποτίμησης με id = AOid, το οποίο βρίσκεται σε editing state. Αρχικά εξετάζετε την κατάσταση στην οποία βρίσκεται το αντικείμενο. Στην περίπτωση που το Αντικείμενο Αποτίμησης δεν είναι σε editing state η διαγραφή δεν επιτρέπεται και επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριότητας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

delete_AO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOid</td>
<td>string</td>
<td>Το AOid του αντικειμένου αποτίμησης το οποίο πρόκειται να διαγραφεί.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete_AOReturn</td>
<td>string</td>
<td>String το οποίο περιλαμβάνει μήνυμα το οποίο ενημερώνει για την επιτυχημένη εκτέλεση του service.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
</table>
Κεφάλαιο 6 – Η αποθήκη υλικού

<table>
<thead>
<tr>
<th>Code</th>
<th>integer</th>
<th>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Msg</td>
<td>string</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.5.2.4 Υπηρεσία αλλαγής κατάστασης Αντικειμένου Αποτίμησης render_AO(AOid)

Επιτρέπει την αλλαγή της κατάστασης ενός Αντικειμένου Αποτίμησης (AOid) το οποίο βρίσκεται σε editing state. Η υπηρεσία τσεκάρει εάν το αντικείμενο βρίσκεται σε editing state και στην συνέχεια το μετατρέπει σε rendered state. Στην περίπτωση που το αντικείμενο βρίσκεται ήδη σε rendered state, επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:
Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOid</td>
<td>string</td>
<td>Το AOid του αντικειμένου αποτίμησης του οποίου την αλλαγή κατάστασής επιθυμούμε.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>render_AOReturn</td>
<td>string</td>
<td>String που περιλαμβάνει μήνυμα το οποίο ενημερώνει για την επιτυχημένη εκτέλεση του service.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>string</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.5.2.5 Υπηρεσία δημιουργίας αντίγραφου Αντικειμένου Αποτίμησης createCopyOfRendered_AO(AOid)

Δημιουργεί αντίγραφο Αντικειμένου Αποτίμησης (αντίγραφο METS και αντίγραφο QTI περιγραφής), το οποίο προσθέτεται με το όρισμα AOid και το οποίο βρίσκεται σε rendered κατάσταση. Το νέο Αντικείμενο Αποτίμησης είναι σε editing κατάσταση. Εάν το Αντικείμενο Αποτίμησης του οποίου θέλουμε να δημιουργήσουμε αντίγραφο, δεν είναι σε rendered κατάσταση, τότε δεν επιτρέπεται το αντίγραφο και επιστρέφεται μήνυμα σφάλματος. Στην περίπτωση επιτυχούς αντιγραφής επιστρέφεται το id του νέου Αντικειμένου Αποτίμησης που δημιουργήθηκε. Χρησιμοποιώντας την υπηρεσία αυτή, νέα Αντικείμενα Αποτίμησης, τα οποία βασίζονται σε ήδη υπάρχοντα, μπορούν να δημιουργηθούν και στην συνέχεια να υποστούν επεξεργασία.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:
Στον επόμενο πίνακα παραγγέλουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

createCopyOfRendered_AO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOid</td>
<td>String</td>
<td>Το ΑOid του αντικειμένου του οποίου θέλουμε να δημιουργήσουμε αντίγραφο.</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>createCopyOfRende</td>
<td>String</td>
<td>Το String αυτό περιλαμβάνει το μοναδικό id του νέου</td>
</tr>
</tbody>
</table>
Κεφάλαιο 6 – Η αποθήκη υλικού

<table>
<thead>
<tr>
<th>red_AOReturn</th>
<th>Αντικειμένου που δημιουργήθηκε.</th>
</tr>
</thead>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος Παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.5.3 Request/Deliver

6.5.3.1 Υπηρεσία ανάκτησης Αντικειμένου Αποτίμησης get_AO (AOid)

Επιστρέφεται η περιγραφή (METS έγγραφο και QTI περιγραφή) του Αντικειμένου Αποτίμησης με id = AOid. Σε περίπτωση ανεπιτυχούς εκτέλεσης επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριότητας που παρακάτω περιγράφει τον τρόπο λειτουργίας της υπηρεσίας αυτής:

Στον επόμενο πίνακα περιγράφουμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.
get_AO

Service input:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOid</td>
<td>String</td>
<td>Το AOid του αντικειμένου αποτίμησης που θέλουμε να ανακτήσουμε..</td>
</tr>
</tbody>
</table>

Service output:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_AOReturn</td>
<td>Vector</td>
<td>Λίστα δύο στοιχείων. Το πρώτο στοιχείο είναι το METS έγγραφο σε μορφή string του αντικειμένου αποτίμησης (ΑΟ) που ζητήθηκε. Το δεύτερο στοιχείο είναι η QTI περιγραφή σε μορφή string του αντικειμένου αποτίμησης.</td>
</tr>
</tbody>
</table>

Fault:

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Integer</td>
<td>Κωδικός σφάλματος σε περίπτωση σφάλματος κατά την εκτέλεση του service.</td>
</tr>
<tr>
<td>Msg</td>
<td>String</td>
<td>Μήνυμα σφάλματος που αντιστοιχεί στον κωδικό σφάλματος.</td>
</tr>
</tbody>
</table>

6.5.3.2 Υπηρεσία ανάκτησης LOM μεταδεδομένων get_AO_summary(AOids, lomElements)

Ανακτά τις τιμές των LOM μεταδεδομένων (metadata) τα οποία ορίζονται στο lomElements. Η παράμετρος `AOids` περιέχει τα αναγνωριστικά ids των Αντικειμένων Αποτίμησης των οποίων τα μεταδεδομένα εξετάζουμε. Ο σκοπός της συγκεκριμένης υπηρεσίας είναι να δώσει την δυνατότητα ανάκτησης συγκεκριμένων μεταδεδομένων μιας ομάδας Αντικειμένων Αποτίμησης όταν ώστε να υποστηρίξουν διάφορα σενάρια αλληλεπίδρασης τα οποία περιλαμβάνουν παρουσίαση μεταδεδομένων Αντικειμένων Αποτίμησης μετά από κάποια αναζήτηση. Σε περίπτωση ανεπιτυχείς εκτέλεσης της υπηρεσίας επιστρέφεται μήνυμα σφάλματος.

Το διάγραμμα δραστηριοτήτας που ακολουθεί περιγράφει τον τρόπο λειτουργίας της υπηρεσίας ως εξής:
Στον επόμενο πίνακα παριστάμε τις παραμέτρους κλήσης της υπηρεσίας, τις παραμέτρους εξόδου καθώς και τις παραμέτρους που επιστρέφονται σε περίπτωση λάθους.

Get_AO_summary

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOIds</td>
<td>Vector</td>
<td>Τα AOIds των αντικειμένων αποτίμησης των οποίων τα μεταδεδομένα θέλουμε να εξετάσουμε.</td>
</tr>
<tr>
<td>lomElements</td>
<td>Vector</td>
<td>Λίστα από LOM στοιχεία μεταδεδομένων των οποίων τις τιμές (τις τιμές που έχουν στα αντικείμενα αποτίμησης που δόθηκαν στην πρώτη παράμετρο) θέλουμε να εξετάσουμε.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Όνομα παραμέτρου</th>
<th>Τύπος παραμέτρου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_AO_summaryR</td>
<td>Vector</td>
<td>Λίστα που περιλαμβάνει τα ζητούμενα μεταδεδομένα για κάθε ένα από τα ζητούμενα αντικείμενα αποτίμησης (AO). Κάθε καταχώρηση σε αυτή τη λίστα είναι μία άλλη λίστα η οποία περιλαμβάνει το ΑΟιδ του αντικειμένου αποτίμησης και τις τιμές που έχουν τα ζητούμενα LOM μεταδεδομένα σε αυτό το αντικείμενο.</td>
</tr>
</tbody>
</table>
Κεφάλαιο 6 – Η αποθήκη υλικού

6.6 Περίληψη

Στο κεφάλαιο αυτό περιγράφαμε τις προδιαγραφές που πρέπει να ακολουθούν οι υπηρεσίες διαδικτύου προκειμένου να έχουμε απομακρυσμένη διαχείριση των αποθηκών υλικού. Δώσαμε τις λεπτομέρειες υλοποίησης και χρήσης των υπηρεσιών διαχείρισης των αποθηκών υλικού Αντικειμένων Μαθημάτων, Εκπαιδευτικών Αντικειμένων και Αντικειμένων Αποτίμησης. Θα ακολουθήσει κεφάλαιο στο οποίο θα περιγράψουμε το γραφικό εργαλείο που υλοποιήσαμε προκειμένου να διευκολύνουμε την δημιουργία και εκτέλεση φίλτρων δίττημης και ασαφούς λογικής.
Κεφάλαιο 7

Γραφικό εργαλείο για τη δημιουργία φίλτρων

7.1 Εισαγωγή

Στα πλαίσια της διπλωματικής εργασίας θεωρήσαμε σκόπιμη την δημιουργία ενός γραφικού εργαλείου (το ονομάσαμε Query Editor) το οποίο μας διευκολύνει στην δημιουργία, επεξεργασία, αποθήκευση και εκτέλεση φίλτρων δίτιμης και ασαφούς λογικής.

Το εργαλείο αναπτύχθηκε σαν plug-in της πλατφόρμας ανάπτυξης λογισμικού Eclipse και ειδικότερα σαν αυτόνομη εφαρμογή η οποία έχει την δυνατότητα να τρέξει χωρίς την πλατφόρμα. Το είδος αυτής της εφαρμογής ονομάζεται Rich Client Platform Application και αποτελείται από ένα σύνολο plug-ins του Eclipse. Το μεγάλο πλεονέκτημα αυτής της εφαρμογής σε σχέση με τα παραδοσιακά plug-ins που αναπτύσσονται στο Eclipse είναι ακριβώς αυτή η δυνατότητα της να λειτουργήσει αυτόνομα από την πλατφόρμα και να ανεξαρτητοποιηθεί πλήρως από αυτή. Τα κύρια χαρακτηριστικά της πλατφόρμας Eclipse, της αρχιτεκτονικής της, αλλά και στοιχεία που αφορούν τις μικρές δομικές μονάδες του Eclipse (τα λεγόμενα plug-ins) περιγράφονται αναλυτικά στην ενότητα 2.3.1.

Στο κεφάλαιο αυτό θα περιγράψουμε την λειτουργικότητα του Query Editor. Συγκεκριμένα στις ενότητες 7.2.1, 7.2.2 περιγράφουμε τον τρόπο δημιουργίας, μέσω του Editor, φίλτρων δίτιμης λογικής (Boolean) και φίλτρων ασαφούς λογικής (fuzzy) αντίστοιχα. Στην ενότητα 7.2.3 περιγράφουμε την αποθήκευση φίλτρου μέσω του Editor. Στην ενότητα 7.2.4 διέχουμε τον τρόπο με τον οποίο επιτυγχάνουμε άνοιγμα ήδη υπάρχοντος φίλτρου (ασαφούς ή δίτιμης λογικής). Τέλος στην ενότητα 7.2.5 περιγράφεται ο τρόπος με τον οποίο εκτελεί ένα φίλτρο.
ασαφούς ή δίτιμης λογικής στις αποθήκες υλικού Αντικειμένων Εκπαιδευτικών, Μαθημάτων ή Αποτίμησης προαγαμένου να ανακτήσει αντικείμενα.

7.2 Παρεχόμενη λειτουργικότητα

Ο χρήστης μπορεί να δημιουργήσει νέο fuzzy φίλτρο επιλέγοντας new Fuzzy Filter, να δημιουργήσει Boolean φίλτρο επιλέγοντας new Filter, να ανοίξει ήδη υπάρχον φίλτρο ανεξαρτήτου είδους επιλέγοντας open Filter, να αποθηκεύσει φίλτρο που δημιούργησε και τέλος να εκτελέσει φίλτρο προαιρεμένου να ανακτήσει Αντικείμενα Αποτίμησης, Αντικείμενα Μαθημάτων και Εκπαιδευτικά Αντικείμενα από τις αποθήκες υλικού που ικανοποιούν το φίλτρο.

Πριν ξεκινήσουμε την λεπτομερέστερη περιγραφή της λειτουργικότητας να υπενθυμίσουμε ότι η μορφή και σημασιολογία των φίλτρων έχουν παρουσιαστεί στο κεφάλαιο 5.

Εικόνα 7-1: Οι επιλογές του μενού ‘File’ δίνει την παρεχόμενη λειτουργικότητα για δημιουργία νέου φίλτρου δίτιμης ή ασαφούς λογικής, για άνοιγμα ήδη υπάρχοντος φίλτρου ή για την αποθήκευση φίλτρου. Στο αριστερό τμήμα του Editor απεικονίζεται το φίλτρο σε δενδρική μορφή. Στην δεξιά πλευρά του Editor, μπορεί ο χρήστης να δίνει τιμές στα γνωρίσματα των στοιχείων. Τέλος έχουμε το action ‘Query’, με την επιλογή του οποίου ο χρήστης εκτελεί το φίλτρο στην επιλεγμένη αποθήκη υλικού.
7.2.1 Δημιουργία νέου φίλτρου δίτιμης λογικής

Όταν ο χρήστης επιλέξει να δημιουργήσει φίλτρο δίτιμης λογικής επιλέγοντας new Filter, τότε ο Query Editor δημιουργεί το παρακάτω στοιχείο Query. Ο χρήστης πατώντας δεξί click πάνω στο root στοιχείο δημιουργεί νέο Uterm στοιχείο (μπορεί να δημιουργηθεί το επίθυμο πλήθος τέτοιων στοιχείων). Στην συνέχεια, ο χρήστης πατώντας δεξί click πάνω σε Uterm μπορεί να δημιουργήσει ένα ή περισσότερα Lterm στοιχεία. Ακολούθως, ο χρήστης δημιουργεί ένα ή περισσότερα Atom στοιχεία κάνοντας δεξί click πάνω σε Lterm. Ο χρήστης για κάθε Atom στοιχείο, πατώντας δεξί click πάνω του, επιλέγει το όνομα του στοιχείου LOM που θέλει να βάλει στο φίλτρο (κάθε Atom μπορεί να έχει ένα μόνο όνομα). Έχουμε διαχωρίσει το Atom σε σύνθετο και απλό. Αν είναι σύνθετο πατάμε δεξί click πάνω στο στοιχείο και προσθέτουμε τα συστατικά του.

Συνεχίζοντας, ο χρήστης μπορεί για κάποιο από τα προαναφαρθέντα στοιχεία, πατώντας δεξί click πάνω τους, να επιλέξει delete διαγράφοντας το επιλεγμένο στοιχείο καθώς και τα περιεχόμενά του.

Τέλος ο χρήστης πατώντας διπλό click πάνω σε Query, Uterm, Lterm, Atom ανοίγει φόρμα στην οποία μπορεί να δώσει τιμή στα γνωρίσματα (attributes) type, flag. Οι default τιμές για type είναι or, το flag δεν λαμβάνεται υπ’ όψιν εκτός και αν επιλέξουμε το checkbox. Ο χρήστης πατώντας διπλό click πάνω στο όνομα του Atom μπορεί να ανοίξει άλλη φόρμα στην οποία δίδονται τιμές στα γνωρίσματα type και value.

Η παραπάνω διαδικασία φαίνεται στις επόμενες εικόνες:
Κεφάλαιο 7 – Γραφικό εργαλείο για τη δημιουργία φίλτρων

Εικόνα 7-2: a) ο χρήστης επιλέγει να δημιουργήσει φίλτρο δίτιμης λογικής.

 b) ο χρήστης προσθέτει νέο στοιχείο.

 c) ο χρήστης διαγράφει κάποιο στοιχείο καθώς και τα περιεχόμενά του.

 d) ο χρήστης επιλέγει το LOM στοιχείο που θα εξετάσουμε μέσω του φίλτρου.
Κεφάλαιο 7 – Γραφικό εργαλείο για τη δημιουργία φίλτρων

Εικόνα 7-3: Ο χρήστης πατώντας διπλό click πάνω σε στοιχείο Query/Uterm/Lterm επεξεργάζεται την φόρμα στην οποία ο χρήστης μπορεί να δώσει τιμές στα γνωρίσματα type, flag.

Εικόνα 7-4: Ο χρήστης πατώντας διπλό click πάνω στο όνομα του Atom στοιχείου επεξεργάζεται την φόρμα στην οποία μπορεί να δώσει τιμές στα γνωρίσματα op, value, language. Το γνώρισμα language δεν υπάρχει σε όλα τα Atom στοιχεία αλλά μόνο σε αυτά που αντιστοιχούν σε LOM μεταδεδομένα στα οποία ορίζεται γνώρισμα language.
7.2.2 Δημιουργία νέου Fuzzy φίλτρου

Αφού ο χρήστης επιλέξει να δημιουργήσει φίλτρο ασαφούς λογικής, τότε ο Query Editor δημιουργεί το πατρικό στοιχείο Fuzzy Query. Ο χρήστης πατώντας δεξί click πάνω στο root στοιχείο δημιουργεί Fuzzy Uterm στοιχείο (μπορεί να δημιουργήσει το επιθυμητό πλήθος τέτοιων στοιχείων). Στην συνέχεια, ο χρήστης πατώντας δεξί click πάνω σε Fuzzy Uterm μπορεί να δημιουργήσει ένα ή περισσότερα Fuzzy Lterm στοιχεία. Ακολούθως, ο χρήστης δημιουργεί ένα ή περισσότερα Fuzzy Atom στοιχεία κάνοντας δεξί click πάνω σε Fuzzy Lterm. Ο χρήστης για κάθε Fuzzy Atom στοιχείο, πατώντας δεξί click πάνω του, επιλέγει το όνομα του LOM που θέλει να βάλει στο φίλτρο (κάθε Fuzzy Atom μπορεί να έχει ένα μόνο όνομα). Τα Fuzzy Atom τα έχουμε διαχωρίσει σε σύνθετα και απλά. Αν είναι σύνθετο, πατάμε δεξί click πάνω στο στοιχείο και προσθέτουμε τα συστατικά του.

Συνεχίζοντας, ο χρήστης μπορεί για κάποιο από τα προαναφερθέντα στοιχεία, πατώντας δεξί click πάνω τους, να επιλέξει delete διαγράφοντας το επιλεγμένο στοιχείο καθώς και τα περιεχόμενά του.

Τέλος ο χρήστης πατώντας διπλό click πάνω σε Fuzzy Query, Fuzzy Uterm, Fuzzy Lterm, απλό Fuzzy Atom, ανοίγει φόρμα στην οποία μπορεί να δώσει τιμή στα γνωρίσματα type, flag, weight για όποια στοιχεία ορίζονται. Οι default τιμές για type είναι or, το flag δεν λαμβάνεται υπ’ όψιν εκτός κι αν επιλέξουμε το checkbox ενώ το weight πρέπει να λάβει τιμή από τον χρήστη. Ο χρήστης πατώντας διπλό click πάνω στο όνομα του απλού Atom μπορεί να ανοίξει άλλη φόρμα στην οποία δίδονται τιμές στα γνωρίσματα op και value.

Η παραπάνω διαδικασία φαίνεται στις επόμενες εικόνες:
Εικόνα 7-5: a) ο χρήστης επιλέγει να δημιουργήσει φίλτρο ασαφούς λογικής.
 b) ο χρήστης προσθέτει νέο στοιχείο.
 c) ο χρήστης διαγράφει κάποιο στοιχείο καθώς και τα περιεχόμενά του.
 d) ο χρήστης επιλέγει το LOM στοιχείο που θα εξετάσουμε μέσω του φίλτρου
Κεφάλαιο 7 – Γραφικό εργαλείο για τη δημιουργία φίλτρων

Εικόνα 7-6: ο χρήστης έχει πατήσει διπλό click πάνω σε FuzzyTerm στοιχείο και εμφανίζεται η φόρμα στην οποία ο χρήστης δίνει τιμές στα type, flag weight γνωρίσματα. Η ίδια φόρμα αφορά και τις περιπτώσεις των FuzzyUterm στοιχείων ενώ στα απλά FuzzyAtom στοιχεία δεν υπάρχει το γνώρισμα type και στο FuzzyQuery δεν υπάρχει γνώρισμα weight..

Εικόνα 7-7: ο χρήστης έχει πατήσει διπλό click πάνω στο όνομα του Fuzzy Atom το οποίο στην συγκεκριμένη περίπτωση είναι το educational_context_value και εμφανίζεται φόρμα στην οποία ο χρήστης δίνει τιμές στα γνωρίσματα op,value.
7.2.3 Αποθήκευση φίλτρου

Ο χρήστης προσπαθεί να αποθηκεύσει κάποιο φίλτρο το οποίο έχει δημιουργηθεί από την αρχή ή ήδη υπάρχει και έχει υποστεί επεξεργασία. Μόλις ο χρήστης επιλέξει save filter από το μενού ‘File’, εμφανίζεται φόρμα στην οποία καλείται ο χρήστης να δώσει το όνομα με το οποίο θέλει να αποθηκεύσει το φίλτρο του. Ο χρήστης δίνει όνομα και επιλέγει αποθήκευση(save) ή ακυρώνει την διαδικασία πατώντας ακύρωση(cancel).

Αν ο χρήστης πατήσει αποθήκευση (save) ενώ έχει επιλέξει όνομα αρχείου το οποίο ήδη υπάρχει τότε εμφανίζεται ενημερωτικό μήνυμα με το οποίο ερωτάται ο χρήστης αν θα αντικατασταθεί το αρχείο. Ο χρήστης μπορεί να αντικαταστήσει το ήδη υπάρχον αρχείο, να επιλέξει άλλο όνομα για το αρχείο ή να ακυρώσει την διαδικασία.

Τέλος να σημειώσουμε ότι η αποθήκευση φίλτρου δεν ολοκληρώνεται πριν γίνει έλεγχος εγκυρότητας του φίλτρου. Στην περίπτωση που το φίλτρο δεν είναι έγκυρο, εμφανίζονται μηνύματα που ενημερώνουν τον χρήστη για τα λάθη εγκυρότητας. Ο χρήστης για να προχωρήσει με την αποθήκευση του φίλτρου θα πρέπει να διορθώσει τα λάθη. Λεπτομερείς μπορεί να ακυρώσει την διαδικασία.

Η παραπάνω διαδικασία χαίνεται στην επόμενη εικόνα:
Εικόνα 7-8: a) ο χρήστης επιλέγει να αποθηκεύσει φίλτρο που έχει επεξεργαστεί.

b) ο χρήστης δίνει το όνομα στο φίλτρο

c) το όνομα του φίλτρου ήδη υπάρχει και χρήστης ερωτάται για την αντικατάσταση του υπάρχοντος αρχείου.

d) Η αποθήκευση αρχείου δεν ολοκληρώνεται πριν τον έλεγχο εγκυρότητας του φίλτρου. Αν το fuzzy ή Boolean φίλτρο που έχουμε δημιουργήσει ή επεξεργαστεί δεν πληροί τις προδιαγραφές που έχουν οριστεί από τα αντίστοιχα XML Schemes το φίλτρο δεν αποθηκεύεται. Αντιθέτως εμφανίζεται παράθυρο από το οποίο ενημερώνουμε τον χρήστη για τα λάθη που υπάρχουν τα οποία είτε διορθώνουμε είτε ακυρώνουμε τη διαδικασία.

7.2.4 Άνοιγμα φίλτρου

Ο χρήστης είχε επιλέξει να ανοίξει κάποιο φίλτρο (open Filter). Εμφανίζεται φόρμα στην οποία καλείται ο χρήστης να δώσει το όνομα του αρχείου που αντιπροσωπεύει το φίλτρο που θέλει να ανοίξει. Ο χρήστης επιλέγει όνομα και ανοίγει το αρχείο. Το όνομα φίλτρου δεν ολοκληρώνεται προτού γίνει έλεγχος εγκυρότητας του φίλτρου. Αν ο χρήστης έχει επιλέξει
αρχείο το οποίο είτε δεν είναι έγκυρο αρχείο Boolean ή Fuzzy φίλτρου είτε είναι ‘αλλοιωμένο’
tότε εμφανίζεται μήνυμα το οποίο ενημερώνει τον χρήστη για την αποτυχία ανοίγματος του
αρχείου.

Η παραπάνω διαδικασία χαίνεται στις επόμενες εικόνες:

Εικόνα 7-9: a) ο χρήστης επιλέγει να ανοίξει αρχείο.
b) ο χρήστης επιλέγει το φίλτρο που θα ανοίξει.
c) ο χρήστης προσπαθεί να ανοίξει αρχείο ‘αλλοιωμένο’ ή αρχείο που δεν είναι τύπου
 Boolean ή Fuzzy φίλτρου.
d) ο χρήστης προσπαθεί να ανοίξει μη έγκυρο φίλτρο.

7.2.5 Εκτέλεση φίλτρων

Το φίλτρο δίττιμης (Boolean) ή ασαφούς λογικής (fuzzy) που ο χρήστης έχει δημιουργήσει ή
ανοίξει και επεξεργαστεί, μπορεί να το εκτελέσει και να ανακτήσει Αντικείμενα Αποτίμησης, Αντικείμενα Μαθημάτων ή Εκπαιδευτικά Αντικείμενα. Για την περίπτωση που ο χρήστης
Κεφάλαιο 7 – Γραφικό εργαλείο για τη δημιουργία φίλτρων

εκτελεί φίλτρο δίτιμης λογικής, ανακτώντας τα αναγνώριστικά ids των αντικειμένων τα οποία το εκκοπτόσυνον. Στην περίπτωση όμως των φίλτρων ασαφούς λογικής, ανακτώντας τα αναγνώριστικά ids όλων των αντικειμένων μαζί με την αποτίμηση (rank) που έχει προκύψει για κάθενα από αυτά, σύμφωνα με τους κανόνες υπολογισμού που λαμβάνουν χώρα όταν εκτελείται φίλτρο ασαφούς λογικής (οι κανόνες αυτοί έχουν περιγραφεί στο κεφάλαιο 5.4.1).

Πατώντας στο toolbar την επιλογή Query εμφανίζονται επιλογές οι οποίες καθορίζουν την αποθήκη υλικού στην οποία θα εφαρμοστεί το φίλτρο.

Στην περίπτωση που επιλέγει να εκτελεστεί το φίλτρο στην αποθήκη υλικού Αντικειμένων Μαθημάτων, εμφανίζεται παράθυρο στο οποίο ερωτάται ο χρήστης εάν θέλει να εξετάσει και τα Εκπαιδευτικά Αντικείμενα τα οποία περιέχονται σε κάθε Αντικείμενο Μαθημάτων. Οι λεπτομέρειες για την σκοπιμότητα και τον τρόπο με τον οποίον ερωτάται την αναζήτηση των Αντικειμένων Μαθημάτων, η επιλογή της εξέτασης των Εκπαιδευτικών Αντικειμένων, έχει δοθεί στο κεφάλαιο 6.

Στην περίπτωση που επιλέγει να εκτελεστεί το φίλτρο στην αποθήκη υλικού των Αντικειμένων Αποτίμησης ο χρήστης ερωτάται σε ποια Αντικείμενα Αποτίμησης θέλει να εφαρμοστεί το φίλτρο. Ο χρήστης μπορεί να επιλέξει να εφαρμόσει το φίλτρο στην METS περιγραφή των απλών ερωτήσεων, στην METS περιγραφή των σύνθετων ερωτηματολογίων είτε και στα δύο.

Στην περίπτωση που επιλέγει να εκτελεστεί το φίλτρο στην αποθήκη υλικού των Εκπαιδευτικών Αντικειμένων, ο χρήστης μπορεί να επιλέξει σε ποιο από τα Εκπαιδευτικά Αντικείμενα να εφαρμόσει το φίλτρο. Ο χρήστης μπορεί να επιλέξει αν να εφαρμόσει το φίλτρο στην METS περιγραφή των απλών ερωτήσεων, στην METS περιγραφή των σύνθετων ερωτηματολογίων είτε και στα δύο.

Η παραπάνω διαδικασία φαίνεται στις επόμενες εικόνες:

Η παραπάνω διαδικασία φαίνεται στις επόμενες εικόνες:
Εικόνα 7-10: a) Επιλέγουμε την αποθήκη υλικού για την οποία θα εκτελεστεί το φίλτρο

b) ο χρήστης επιλέγει την αποθήκη υλικού αντικειμένων μαθημάτων και ερωτάται αν θα τρέξει το φίλτρο και για τα εκπαιδευτικά αντικείμενα που περιέχονται σε κάθε αντικείμενο μαθήματος
c) ο χρήστης επιλέγει το είδος των αντικειμένων αποτίμησης στα οποία θα εφαρμοστεί το φίλτρο
d) ο χρήστης θα συμπληρώσει ή όχι τις παραμέτρους για την σύνδεση ή μη, με την αποθήκη υλικού Ψηφιακών Αντικειμένων

Τέλος, μετά τις παραπάνω διαδικασίες, για όλες τις αποθήκες υλικού εμφανίζεται παράθυρο με το οποίο μπορούμε να επιλέξουμε διάφορα ΛΟΜ στοιχεία των οποίων η τιμές θα επιστραφούν μαζί με τα αναγνωριστικά ids (και την αποτίμηση rank αν έχουμε fuzzy filter) των αντικειμένων. Αν δεν θέλουμε κάποιο ΛΟΜ στοιχείο απλώς πατάμε ok χωρίς να τσεκάρουμε κάποιο check box. Ο χρήστης αφού επιστραφούν τα αποτελέσματα θα μπορεί
κεφάλαιο 7 – Γραφικό εργαλείο για τη δημιουργία φίλτρων

πατώντας στα αποτελέσματα να ανακτήσει κάποιο συγκεκριμένο αντικείμενο από τις αποθήκες υλικού.

Εικόνα 7-11 : ο χρήστης μπορεί εάν το θέλει να επιλέξει κάποιο LOM στοιχείο το οποίο θα επιστραφεί(η τιμή που έχει το στοιχείο στο αντίστοιχο έγγραφο)μαζί με τα αναγνωριστικά ids των εγγράφων.

Εικόνα 7-12 : Για Boolean filter, στην πρώτη στήλη είναι τα ids των εγγράφων και ακολουθούν στήλες που περιλαμβάνουν τις τιμές των LOM elements που επιλέξαμε να εμφανιστούν.
Εικόνα 7-13: Για Fuzzy filters, στην πρώτη στήλη εμφανίζονται τα ids των εγγράφων, στην μεσαία στήλη εμφανίζεται το rank που αντιστοιχεί σε κάθε έγγραφο και ακολουθούν στήλες με τις τιμές των LOM στοιχείων που επιλέξαμε να εμφανιστούν.

Εικόνα 7-14: Πατώντας μόνο click πάνω στο id κάποιου εγγράφου παίρνουμε την περιγραφή του.
Στο σημείο αυτό θα παρουσιάσουμε διαγραμματικά την σειρά με την οποία καλούνται οι υπηρεσίες διαδικτύου των αποθηκών υλικού, όταν επιλεγεί να εκτελεστεί κάποιο φίλτρο.

Εικόνα 7-15: Διάγραμμα ακολουθίας το οποίο περιγράφει την σειρά με την οποία καλούνται οι υπηρεσίες διαδικτύου των αποθηκών υλικού όταν επιλεγεί η εκτέλεση φίλτρου.

Στο διάγραμμα παρατηρούμε την εξής διαδοχή: Ο χρήστης εκτελεί το φίλτρο και καλείται η υπηρεσία search_CO ή search_LO ή search_AO ανάλογα την αποθήκη υλικού που έχει επιλεγεί να εξεταστεί.

Στην συνέχεια ανακτώνται τα μόνο τα αναγνωριστικά ids των εγγράφων ή τα ids και οι τιμές κάποιων συγκεκριμένων LOM μεταδεδομένων, στην περίπτωση που ο χρήστης έχει επιλέξει κάποια στοιχεία να επιστραφούν. Στην περίπτωση αυτή καλείται η υπηρεσία get_LO_Summary ή get_AO_Summary ή get_CO_Summary αντίστοιχα.

Ο χρήστης αφού εξετάσει τα αποτελέσματα μπορεί αν το θελήσει να ανακτήσει συγκεκριμένο αντικείμενο. Στην περίπτωση αυτή καλείται η υπηρεσία get_LO ή get_AO ή get_CO.
Να σημειώσουμε ότι στο διάγραμμα, περιγράφουμε την εκτέλεση φίλτρου δίτιμης λογικής. Στην περίπτωση φίλτρων ασαφούς λογικής η διαδοχή των υπηρεσιών παραμένει η ίδια, με την διαφορά ότι στα ανακτώμενα δεδομένα περιλαμβάνεται και η αποτίμηση κάθε αντικειμένου.

7.3 Περίληψη

Στο κεφάλαιο αυτό παρουσιάζουμε το γραφικό εργαλείο Query Editor που αναπτύξαμε στα πλαίσια της διπλωματικής εργασίας. Περιγράφαμε την παρεχόμενη λειτουργικότητα, η οποία συνοπτίζεται στην δημιουργία, επεξεργασία, αποθήκευση και εκτέλεση φίλτρων δίτιμης και ασαφούς λογικής. Παράλληλα δώσαμε παραδείγματα χρήσης του εργαλείου προκειμένου ο αναγνώστης να κατανοήσει καλύτερα τον τρόπο λειτουργίας.

Θα ακολουθήσει κεφάλαιο στο οποίο ανακεφαλαιώνουμε και παρουσιάζουμε πιθανές μελλοντικές επεκτάσεις της λειτουργικότητας η οποία παρέχεται με την παρούσα εργασία.
8.1 Ανακεφαλαίωση

Η εργασία αυτή αποτελεί τμήμα μια ευρύτερης ερευνητικής δραστηριότητας που αποσκοπεί στην αποτελεσματική υποστήριξη καινοτόμων, εξαιτίμους και επικεφαλής πηγαίνοντας πολλαπλά κανάλια διανομής (διαδίκτυο, κινητές συσκευές, ηλεκτρονική τηλεόραση) για την παροχή επανεκπαιδευτικών εμπειριών στους εκπαιδευόμενους. Η βάση του όλου συστήματος είναι μια σειρά από καλά ορισμένες αποθήκες υλικού οι οποίες δίνουν τη δυνατότητα σταδιακής δημιουργίας επανεκπαιδευτικών εμπειριών, εξαιτίμους από άνωθεν από αντικείμενα πόλιμα στοιχεία οι οποίοι υπάρχουν σε εξωτερικές πηγές, περιεχόμενα και δήμοφυγάρια σταδιακή όλοντα και συνδετόφρους τύπους αντικειμένων μέχρι να καταστεί δυνατή η σύνθεση επανεκπαιδευτικών εμπειριών. Η γενική αρχιτεκτονική παρέχει επίσης τη δυνατότητα να δημιουργήθοντα αυτόματα εξαιτίμους επανεκπαιδευτικές εμπειρίες για επανεκπαιδεύομενους οι οποίοι έχουν διαφοροφυγάρια τρόπους εκμάθησης (learning styles), διαφορετικό γνωστικό υπόβαθρο (educational level), αλλά και διαφοροφυγάριες τεχνικές και παραμέτρους εκμάθησης οι οποίες επηρεάζουν και διαφοροφυγάριες την αναμενόμενη αποτέλεσμα-προϊόν της επανεκπαιδευτικής διαδικασίας.

Για την υλοποίηση αυτής της γενικής αρχιτεκτονικής χρειάζεται να μπορούμε να διαχειριζόμαστε αποτελεσμάτικα και με εναλλα τρόπο διάφορους τύπους αντικειμένων και ειδικότερα: Επανεκπαιδευτικά Αντικείμενα, Αντικείμενα Αποτίμησης καθώς και Αντικείμενα Μαθημάτων τα οποία περιέχουν Επανεκπαιδευτικά Αντικείμενα και Αντικείμενα Αποτίμησης. Πρέπει να εξασφαλίζεται η επαναφρονημοποιημόνητη των αντικειμένων και να παρέχονται όλες οι βασικές λειτουργίες αποθήκευσης, ανάκτησης και αναζήτησης. Καθίσταται λοιπόν
αναγκαίο να σχεδιαστεί και να αναπτυχθεί το κατάλληλο λογισμικό με τη μορφή ενός ενοποιημένου συστήματος αποθηκών που θα επιτρέπει τη διαχείριση Εκπαιδευτικών Αντικειμένων, Αντικειμένων Αποτίμησης και Αντικειμένων Μαθημάτων και θα υποστηρίζει τα υπόλοιπα τμήματα λογισμικού που αναλαμβάνουν τη συγχρηματοφυλάκιο του περιεχομένου και τη διανομή του στους εκπαιδευόμενους.

Σκοπός της παρούσας διπλωματικής είναι να καλύψει την παραπάνω ανάγκη με το σχεδιασμό και την υλοποίηση ενός Ενοποιημένου Συστήματος Αποθηκών Εκπαιδευτικού Υλικού το οποίο επιτρέπει την αποθήκευση, αναζήτηση και ανάκτηση διαφόρων τύπων εκπαιδευτικού υλικού μέσω κατάλληλων προτύπων μεταδεδομένων. Οι υποστηριζόμενοι τύποι αντικειμένων εκπαιδευτικού υλικού είναι οι εξής:

1. Εκπαιδευτικά Αντικείμενα (Learning Objects) τα οποία αποτελούν τα ελάχιστα δομικά συστατικά μάθησης τα οποία μπορούν να επαναχρησιμοποιηθούν σε διαφορετικές εκπαιδευτικές εμπειρίες και περιγράφονται με κατάλληλες εμπειρίες και περιγράφονταν με κατάλληλες μεταδεδομένες.

2. Αντικείμενα Αποτίμησης (Assessment Objects) τα οποία μπορεί να είναι ερωτηματολόγια ή μερικών αρωτήσεων αξιολόγησης. Τα αντικείμενα αυτά μπορούν να θεωρηθούν ως ειδικές κατηγορίες εκπαιδευτικών αντικειμένων που ακολουθούν συγκεκριμένες προδιαγραφές και αποσκοπούν στην αποτίμηση των αποτελεσμάτων της εκπαιδευτικής διαδικασίας.

3. Αντικείμενα Μαθημάτων (Courseware Objects) τα οποία αποτελούνται από εισαγωγεις εκπαιδευτικών αντικειμένων και αντικειμένων αποτίμησης ενσωματώνονται και μεταδεδομένα που αφορούν παρουσίαση και πλοήγηση.

Επιπλέον, στα πλαίσια της παρούσας διπλωματικής εργασίας, υλοποιήθηκε Γραφικό Εργαλείο Αναζήτησης και Παρουσίασης Αντικειμένων που βρίσκονται στις αποθήκες του ενοποιημένου συστήματος με τη δημιουργία ψηφικών αναζήτησης, την αποστολή των προς εκτέλεση στην κατάλληλη αποθήκη, τη λήψη και παρουσίαση των αποτελεσμάτων.

Στα κεφάλαια που προηγήθηκαν παρουσιάστηκαν αρχικά (Κεφάλαιο 2) οι διάφορες τεχνολογίες υλοποίησης και τα διάφορα τεχνικά πρότυπα που χρησιμοποιήθηκαν για την ανάπτυξη του Ενοποιημένου Συστήματος Αποθηκών Εκπαιδευτικού Υλικού και για την απομακρυσμένη διαχείριση των επιμέρους αποθηκών υλικού από τις οποίες αποτελείται, μέσω υπηρεσιών διαδικτύου. Επίσης παρουσιάστηκε η πλατφόρμα Eclipse πάνω στην οποία...
αναπτύχθηκε το γραφικό εργαλείο Query Editor, μεσω του οποίου συντάσσουμε, επεξεργαζόμαστε, αποθηκεύουμε και εκτελούμε φίλτρα ασαφούς και δίτιμης λογικής.

Στη συνέχεια στο τρίτο κεφάλαιο ακολούθησε περιγραφή της αρχιτεκτονικής του LOGOS, καθώς και του είδους των αντικειμένων που διαχειρίζονται οι αποθήκες υλικού που υλοποιήσαμε στα πλαίσια της διπλωματικής εργασίας.

Κατόπιν, στο Κεφάλαιο 4 έλαβε χώρα λεπτομερή παρουσίαση της αρχιτεκτονικής των αποθηκών υλικού που υλοποιήσαμε στα πλαίσια της διπλωματικής εργασίας προκειμένου να διαχειριστούμε τα Εκπαιδευτικά Αντικείμενα, τα Αντικείμενα Μαθημάτων και Αντικείμενα Αποτίμησης.

Παράλληλα, δόθηκε μια πρώτη εικόνα των υπηρεσιών που υποστηρίζουμε καθώς και τον τρόπο με τον οποίο υποστηρίζουμε την δημιουργία τους για τα Αντικείμενα Μαθημάτων και Εκπαιδευτικά Αντικείμενα.

Στο πέμπτο κεφάλαιο πραγματοποιήθηκε αναλυτική παρουσίαση των φίλτρων αναζήτησης. Στο κεφάλαιο αυτό θα περιγράψαμε αναλυτικά την δομή, σημασιολογία και αναγκαιότητα των φίλτρων αναζήτησης δίτιμης και ασαφούς λογικής.

Έπειτα, στο έκτο κεφάλαιο περιγράφαμε τις προδιαγραφές και λεπτομέρειες υλοποίησης των υπηρεσιών διαδικτυίου με τις οποίες επιτυγχάνουμε πρόσβαση για εισαγωγή, ανάκτηση και επεξεργασία των αντικειμένων ή τμημάτων των αντικειμένων που βρίσκονται στις αποθήκες υλικού.

Τέλος, στο έβδομο κεφάλαιο παραθέσαμε έναν οδηγό περιγραφής και χρήσης του γραφικού εργαλείου Query Editor, μέσω του οποίου δημιουργούμε, επεξεργαζόμαστε, αποθηκεύουμε και εκτελούμε φίλτρα ασαφούς και δίτιμης λογικής.

8.2 Συνεισφορά της διπλωματικής εργασίας

Η παρούσα εργασία όπως ήδη αναφέρθηκε, σχετίζεται στενά με τα ερευνητικά έργα LOGOS στα οποία μετέχει το Εργαστήριο Διανεμημένων Πληροφορικών Συστημάτων και Εφαρμογών Πολυμέσων του Πολυτεχνείου Κρήτης.
8.2.1 Το έργο LOGOS: Knowledge-on-Demand for Ubiquitous Learning

Ο κύριος στόχος του έργου αυτού είναι η δημιουργία μίας πλατφόρμας απαιτούμενης εκμάθησης (ubiquitous learning – uLearning) η οποία συνδυάζει τη χρήση εκπαιδευτικών αντικειμένων που δημιουργούνται μέσω ενός κατάλληλου περιβάλλοντος συγγραφής (LOGOS Authoring Studio) και διανέμονται προς τους εκπαιδευόμενους μέσα από ψηφιακή αναμετάδοση σε δεκτές ψηφιακής τηλεόρασης, μέσω κινητών συσκευών και μέσω του Διαδικτύου.

Οι ειδικότεροι στόχοι του έργου LOGOS είναι οι εξής:

1. Δημιουργία μίας πλατφόρμας «cross-media» για την εκμάθηση μέσω διαδικτύου, χρησιμοποιώντας τον παγκόσμιο ιστό, τα κινητά τηλέφωνα, και τις υπηρεσίες ψηφιακής αναμετάδοσης.

2. Δημιουργία και διαχείριση περιεχομένου με χρήση ενός περιβάλλοντος συγγραφής (Authoring Studio) η οποία χρησιμοποιεί υπάρχοντα ψηφιακά αντικείμενα που διανέμονται σε εξωτερικούς περιεχομένους.

3. Έλεγχος και τεκμηρίωση της λειτουργικότητας της νέας πλατφόρμας με εκτεταμένο πειραματισμό.

Το έργο LOGOS δίνει ιδιαίτερη βαρύτητα στην παροχή υπηρεσιών εξατομικευμένης μάθησης και για το σκοπό αυτό ακολουθεί μια αρχιτεκτονική η οποία βασίζεται στην έννοια των αφηρημένων εκπαιδευτικών σεναρίων, όπως παρουσιάστηκαν στην εργασία αυτή. Το λογισμικό που αναπτύχθηκε στην παρούσα εργασία χρησιμοποιείται στο έργο LOGOS για την κατασκευή και διαχείριση των αφηρημένων εκπαιδευτικών σεναρίων και από τα προφίλ των εκπαιδευμένων για την αυτόματη κατασκευή εξατομικευμένων εκπαιδευτικών εμπειριών. Οι υπηρεσίες διανέμονται στη συνέχεια σε κατάλληλη μορφή στους τελικούς χρήστες.

8.2.2 Περαιτέρω αξιοποίηση της αποθήκης υλικού Αντικειμένων Αποτίμηση στο πλαίσιο του έργου iQTool - Innovative eLearning Tool for Quality Training Material in VET εμπειριών οι οποίες διανέμονται στη συνέχεια σε κατάλληλη μορφή στους τελικούς χρήστες.

Σκοπός του έργου αυτού είναι ανάπτυξη ενός αρχικού λογισμικού υλικού να υποστηρίζει την αξιολόγηση εκπαιδευτικού υλικού και υπηρεσιών ηλεκτρονικής μάθησης.
εξασφαλίζοντας την εφαρμογή μοντέλων διασφάλισης ποιότητας σε ηλεκτρονική μάθησης. Το εργαλείο αυτό θα μπορεί να ενσωματωθεί σε Σύστημα Διαχείρισης Μάθησης. Το πλεονέκτημα αυτής της ενσωμάτωσης είναι ότι οι απαντήσεις των εργαλειοτήτων θα μπορούν να αποθηκεύονται ταυτόχρονα με την παρουσίαση των σελίδων του εκπαιδευτικού υλικού και να υφίστανται στατιστική επεξεργασία για την εξαγωγή χρήσιμων συμπερασμάτων τα οποία μπορούν να αξιοποιηθούν για τη βελτίωση του υλικού και των συναφών υπηρεσιών. Το ίδιο αναπτύσσει κατάλληλες μεθοδολογίες διασφάλισης ποιότητας σε ηλεκτρονική μάθηση οι οποίες εφαρμόζονται με τη χρήση του παραπάνω εργαλείου και αξιοποιούν/επεκτάνειν υφιστάμενες προσεγγίσεις διασφάλισης ποιότητας ηλεκτρονικής μάθησης.

Είναι φανερό, ότι για την υλοποίηση του παραπάνω εργαλείου καθίσταται αναγκαία η υπαρξία μιας αποθήκης Αντικειμένων Αποτύπωσης η οποία διαχειρίζεται ερωτήσεις και ερωτηματολόγια. Η Αποθήκη που έχει επιλεχθεί να χρησιμοποιηθεί είναι η Αποθήκη Αντικειμένων Αποτύπωσης που αναπτύχθηκε στην εργασία αυτή λόγω της γενικότητάς της και του γεγονότος ότι βασίζεται στα δημοφιλή πρότυπα METS και QTI. Η αποθήκη αυτή επεκτείνεται με την αναγκαία λειτουργικότητα που απαιτείται για την αποθήκευση και στατιστική επεξεργασία απαντήσεων ενώ σε μεταγενέστερη φάση του έργου θα αναπτυχθούν και οι αναγκαίες γραφικές διαπραγμάτευσες που θα ενσωματωθούν στο Σύστημα Διαχείρισης Μάθησης που θα επίλεγει προς επέκταση.

8.3 Μελλοντικές Επεκτάσεις

8.3.1 Επέκταση του γραφικού εργαλείου Query Editor

Στην παρούσα μορφή, το γραφικό εργαλείο Query Editor υποστηρίζει ανάπτυξη, άνοιγμα, αποθήκευση και εκτέλεση ψηφιακών δετίμων και ασαφώς λογικής. Μελλοντική επέκταση θα μπορούσε να είναι η υποστήριξη κι άλλων λειτουργικών διαχειρισμός, όπως εισαγωγή και διαγραφή αντικειμένων στις αποθήκες υλικού. Επίσης θα μπορούσε να επεκταθεί το γραφικό εργαλείο προκειμένου να υποστηρίζει δημιουργία και διαχείριση 'συναγερμών'.

8.3.2 Αντικατάσταση Berkeley DB XML

Στα πλαίσια της διπλωματικής εργασίας, χρησιμοποιήθηκε η Berkeley DB XML, η οποία είναι XML, βάση δεδομένων ανοικτού λογισμικού. Με μελλοντική επέκταση θα μπορούσε να είναι η αντικατάσταση της από κάποιο άλλο λογισμικό διαχείρισης XML εγγράφων που θα
παρέχει ακόμη μεγαλύτερη αξιοπιστία και αποδοτικότητα (για παράδειγμα ο SQL Server της Microsoft).
ΒΙΒΛΙΟΓΡΑΦΙΑ

http://ltsc.ieee.org/wg12/
http://www.imsglobal.org/question/
[4] Δημήτριος Σαμψών, “Η Γλώσσα Σήμανσης XML” Πανεπιστημιακές σημειώσεις, Τμήμα
Διδακτικής της Τεχνολογίας και Ψηφιακών Συστημάτων, Πανεπιστήμιο Παφού, Δεκέμβριος 2003
Expressions Based on Xtrie “, Διπλωματική εργασία Πολυτεχνείο Κρήτης, Τμήμα ΗΜΜΥ,
Χανιά 2004
http://www.loc.gov/standards/mets
[10] DRI. 2003 IMS Digital Repositories specification V1.0. Available at:
http://www.imsglobal.org/digitalrepositories/
[11] Nektarios Moumoutzis, Polyxeni Arapi, Peter Stockinger and the LOGOS consortium,
“Report on work package WP3: LOGOS subsystem for transforming digitised knowledge in
courseware objects”, LOGOS Project D6 report, 21/1/2008
Personalized Learning Experiences within the LOGOS Cross-Media Learning Platform”,
Workshop notes of the Workshop on Cross-Media and Personalized Learning Applications
on top of Digital Libraries (LADL 2007), held in conj. with the 11th European Conference on
Research and Advanced Technology for Digital Libraries (ECDL 2007), Budapest, Hungary,
September 2007
Language – WSDL”, http://www.w3.org/TR/wsdl (2001)
Interoperability between Digital Libraries and E-Learning Applications”. Proceedings of the
6th IEEE International Conference on Advanced Learning Technologies (ICALT 2006),
Digital Libraries and e-Learning Applications and Pedagogy-driven Personalization”, MSc
Thesis, Electronic and Computer Engineering Department, Technical University of Crete,
2008 (to appear)
ΠΑΡΑΡΤΗΜΑ Δ

Στο σημείο αυτό θα γίνει λεπτομερής περιγραφή των περιπτώσεων χρήσης στις οποίες βασίστηκε η ανάπτυξη του Query Editor. Το πιο σημαντικό μέρος της πληροφορίας που παρέχεται μέσω των περιπτώσεων χρήσης είναι το κόμμα επιτυχείς σενάρια, καθώς και οι επεκτάσεις του, εφόσον σε αυτό περιγράφεται η λειτουργικότητα της κάθε περίπτωσης χρήσης.

Προτού παραθέσουμε τους πίνακες περιπτώσεων χρήσης, θα δώσουμε μερικές πληροφορίες σχετικά με την δομή και την χρησιμότητα των περιπτώσεων χρήσης.

Μια περίπτωση χρήσης αποτελεί την περιγραφή μιας αλληλεπίδρασης μεταξύ των χρηστών ενός συστήματος και του ίδιου του συστήματος. Πιο συγκεκριμένα, μια περίπτωση χρήσης περιγράφει τη συμπεριφορά ενός συστήματος, κάτω από τις διάφορες συνθήκες οι οποίες μπορούν να εμφανιστούν, καθώς αυτό ανταποκρίνεται στην αίτηση ενός από τους χρήστες του (πρωτεύων ενεργών).

Ο πρωτεύων ενεργών ξεκινάει μια αλληλεπίδραση με το σύστημα με σκοπό την εκπλήρωση κάποιου συγκεκριμένου σκοπού (goal). Το σύστημα ανταποκρίνεται, προστατεύοντας παράλληλα τα ενδιαφέροντα όλων των υπολοίπων χρηστών. Ανάλογα με την αίτηση η οποία γίνεται κάθε φορά, αλλά και τις συνθήκες κάτω από τις οποίες αυτή πραγματοποιείται, είναι δυνατόν να οδηγήθει σε διαφορετικές ακολουθίες συμπεριφοράς του συστήματος. Μια περίπτωση χρήσης ενοποιεί όλες αυτές τις περιπτώσεις συμπεριφοράς.

Η περιγραφή των περιπτώσεων χρήσης γίνεται με τη μορφή κειμένου, επιτρέποντας έτσι την εύκολη κατανόηση τους ακόμα και από άνθρωπους οι οποίοι δεν έχουν κάποια ειδική εκπαίδευση. Οι τρεις βασικές έννοιες οι οποίες χρησιμοποιούνται για την περιγραφή μιας περίπτωσης χρήσης είναι:

- Το Πεδίο (Scope): Τι πραγματικά είναι το υπό μελέτη σύστημα
Ο Πρωτεύον Ενεργών (Primary Actor): Ποιόν υιοθετεί η εκπλήρωση ενός στόχου

Το Επίπεδο (Level): Πόσο υψηλού ή χαμηλού επιπέδου είναι ο στόχος αυτός

Η φόρμα η οποία προτείνεται από τον Cockburn (http://alistair.cockburn.us/index.php/Resources_for_writing_use_cases) και χρησιμοποιήθηκε για την περιγραφή των περιπτώσεων χρήσης φαίνεται στον παρακάτω πίνακα:

<table>
<thead>
<tr>
<th>USE CASE #</th>
<th>« Το όνομα της περιπτώσης χρήσης »</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal in Context</td>
<td>« Περιγραφή του στόχου που καλείται να υπηρετήσει »</td>
</tr>
<tr>
<td>Scope & Level</td>
<td>« Ποια είναι η εμβέλεια της περιπτώσης χρήσης Ένα από: Summary, Primary Task, Sub function »</td>
</tr>
<tr>
<td>Preconditions</td>
<td>« Ποιες είναι οι συνθήκες που πρέπει να ισχύουν όταν ενεργοποιείται η περιπτώση χρήσης »</td>
</tr>
<tr>
<td>Success End Condition</td>
<td>« Οι συνθήκες που ισχύουν μετά την επιτυχή εκτέλεση της περιπτώσης χρήσης »</td>
</tr>
<tr>
<td>Failed End Condition</td>
<td>« Οι συνθήκες που ισχύουν όταν ο στόχος δεν ικανοποιήθηκε, δηλαδή όταν η περιπτώση χρήσης δεν εκτελεστεί επιτυχώς »</td>
</tr>
<tr>
<td>Primary, Secondary Actors</td>
<td>« Το όνομα του πρωτεύοντος και άλλων πιθανών δευτερευόντων ενεργούντων »</td>
</tr>
<tr>
<td>Trigger</td>
<td>« Η δράση πάνω στο σύστημα η οποία προκαλεί την εισάρτηση της περιπτώσης χρήσης »</td>
</tr>
</tbody>
</table>

MAIN SUCCESS SCENARIO

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>« Τα βήματα που ακολουθούνται από την εισάρτηση της περιπτώσης χρήσης έως την επιτυχή ολοκλήρωσή της »</td>
</tr>
<tr>
<td>2</td>
<td>« Βήμα 2” »</td>
</tr>
<tr>
<td>3</td>
<td>« Βήμα 3” » . . .</td>
</tr>
</tbody>
</table>

EXTENSIONS

<table>
<thead>
<tr>
<th>Step</th>
<th>Branching Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>« Περιγραφή της συνθήκης που προκαλεί διακλάδωση : δράση ή όνομα της υποπεριπτώσης χρήσης »</td>
</tr>
</tbody>
</table>

Πίνακας 3 : Πίνακας για την περιγραφή των περιπτώσεων χρήσης όπως προτείνεται από τον Alistair Cockburn.
Για να μπορέσει κανείς να κατανοήσει τον τρόπο περιγραφής των περιπτώσεων χρήσης σύμφωνα με τον Cockburn, είναι απαραίτητη η κατανόηση των ακόλουθων ορισμών:

- **Ενεργών (Actor):** Οποιοσδήποτε ή στις διαρκείς ισχύος μετέχει στην κατανόηση του υπό μελέτη συστήματος
- **Συμμετέχων (Stakeholder):** Κάποιος ή κάτι το οποίο συμμετέχει στην καθορισμού της συμπεριφοράς του υπό μελέτη συστήματος
- **Πρωτεύων Ενεργών (Primary Actor):** Ο συμμετέχων ο οποίος εξέπλησε την αλληλεπίδραση με το υπό μελέτη σύστημα, με σκοπό την εκπλήρωση κάποιου στόχου
- **Δευτερεύων Ενεργών (Secondary Actor):** Ο συμμετέχων ο οποίος παίρνει μέρος στην περίπτωση χρήσης αλλά δεν έχει εκκινήσει ο ίδιος τη διαδικασία της αλληλεπίδρασης
- **Περίπτωση χρήσης (Use Case):** Ένα συμβολαίο σχετικά με τη συμπεριφορά του υπό μελέτη συστήματος
- **Πεδίο (Scope):** Προσδιορίζει το σύστημα το οποίο μελετάται
- **Προϋποθέσεις και Εγγυήσεις (Preconditions and Guarantees):** Τι πρέπει να είναι αληθές πριν και μετά την εκτέλεση μιας περίπτωσης χρήσης
- **Πυροδοτήτης (Trigger):** Μια κατάσταση ή ένα γεγονός το οποίο προηγείται και προκαλεί την εκκίνηση μιας περίπτωσης χρήσης
- **Κύριο επιτυχές σενάριο (Main Success Scenario):** Η περίπτωση στην οποία τίποτα δεν πάει λάθος
- **Επεκτάσεις (Extensions):** Οι ανιχνεύτητες διαφορετικοί μπορεί να συμβεί κατά τη διάρκεια εκτέλεσης της επιτυχούς σενάριο. Οι σημείωση που φαίνονται στον πίνακα αποτελούν τα βήματα του κύριου επιτυχούς σενάριου στα οποία αναφέρονται οι επεκτάσεις

Σημειώνουμε ότι όταν μια περίπτωση χρήσης κάνει αναφορά σε μια άλλη, τότε η αναφερόμενη περίπτωση χρήσης υπογραμμίζεται.

Όπως είναι φυσικό, τόσο οι στόχοι τους οποίους καλούνται να εκπληρώσουν οι διάφορες περιπτώσεις χρήσης, όσο και οι διάφορες αλληλεπιδράσεις οι οποίες συμβαίνουν μεταξύ των περιπτώσεων χρήσης, είναι δυνατόν να χωριστούν σε υπό-περιπτώσεις και υπό-αλληλεπιδράσεις αντίστοιχα, προκαλώντας έτσι μια σύγχυση σχετικά με το επίπεδο στο οποίο
ανήκει ο στόχος που επιτυγχάνει η κάθε περίπτωση. Για να αποφεύγει αυτή η σύγχυση ο Cockburn όρισε τρία επίπεδα στόχων τους οποίους καλούνται να επιτύχουν οι διάφορες περιπτώσεις χρήσης.

Το επίπεδο των στόχων του χρήστη (user goals – primary tasks) είναι αυτό που παρουσιάζει το μεγαλύτερο ενδιαφέρον. Ως στόχο χρήσης ορίζουμε τον στόχο που προσπαθεί να επιτύχει ο πρωτεύων χρήσης μέσω της εκτέλεσης μιας περίπτωσης χρήσης. Μια ερώτηση η οποία μπορεί να σηματοδοτήσει το χαρακτηρισμό ενός στόχου χρήσης είναι η εξής: μπορεί ο πρωτεύων χρήσης να φύγει υποκειμένος μετά την εκπλήρωση του συγκεκριμένου στόχου; Πάνω από το επίπεδο των στόχων του χρήστη βρίσκεται το επίπεδο των συνοπτικών ή στρατηγικών στόχων (summary level or strategic goals). Κάθε στόχος αυτού του επιπέδου αποτελείται από πολλά πλούσια στόχους χρήσης. Μια περιγραφή ενός συστήματος σε αυτό το επίπεδο εμφανίζει τρεις κυρίως σκοπούς: παρουσίαση του πλαίσιο στο οποίο λειτουργούν οι στόχοι του χρήστη, παρουσίαση του κύκλου ζωής των διαφόρων σχετιζόμενων στόχων, και τέλος αποτελεί έναν πίνακα περιγραφής για τα κατώτερα επίπεδα. Οι στόχοι του επιπέδου των υπό-λειτουργιών (sub-function level goals) είναι αυτοί οι οποίοι απαιτούνται για την πραγματοποίηση των στόχων χρήσης. Στο επίπεδο αυτό γίνεται περιγραφή εξειδικευμένων λειτουργιών οι οποίες χρησιμοποιούνται κατά τη διάρκεια της εκτέλεσης αρκετών στόχων χρήσης.

Για να αποφεύγει η παρουσίαση της ολικής εικόνας του συνόλου των περιπτώσεων χρήσης οι οποίες χρησιμοποιούνται στην ανάλυση των απαιτήσεων ενός συστήματος απαιτούνται δύο συμπληρωματικά εργαλεία:

- Το διάγραμμα της «συνολικής εικόνας» (overall picture) το οποίο αναπτύσσει τις περιπτώσεις χρήσης ως κοιτά τα οποία συνδέονται μεταξύ τους με σχέσεις (ποια περίπτωση χρήσης καλεί ποια άλλη)

- Ο «συνοπτικός πίνακας» (summary table) ο οποίος περιέχει πληροφορίες σχετικά με το αναγνωριστικό, το όνομα, τον κύριο ενεργούντα, το στόχο και μια μικρή περιγραφή για κάθε περίπτωση χρήσης.

Ακολουθεί το διάγραμμα «συνολικής εικόνας», ο «συνοπτικός πίνακας» και λεπτομερής περιγραφή των περιπτώσεων χρήσης σύμφωνα με τους πίνακες που προτείνει ο Cockburn.
Εικόνα 8-1: Διάγραμμα «συνολικής εικόνας» των περιπτώσεων χρήσης

<table>
<thead>
<tr>
<th>Όνομα</th>
<th>Επίπεδο</th>
<th>Κώριος Ενεργών</th>
<th>Στόχος</th>
<th>Περίληψη</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage Boolean Filters</td>
<td>Summary</td>
<td>Ο χρήστης</td>
<td>Διαχείριση φίλτρων δίτμησης λογικής</td>
<td>Ο χρήστης εισάγει την εφαρμογή για να δημιουργήσει, επεξεργαστεί, αποθηκεύσει ή εκτελέσει</td>
</tr>
<tr>
<td>Edit Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit Fuzzy Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit Uterm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit Lterm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit Atom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manage Fuzzy Filter</td>
<td>Summary</td>
<td>Ο χρήστης διαχείριση φίλτρων ασαφούς λογικής</td>
<td>Ο χρήστης εισαγάγει την εφαρμογή για να δημιουργήσει, επεξεργαστεί, αποθηκεύσει ή εκτελέσει φίλτρα ασαφούς λογικής</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>--------------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Edit Fuzzy Filter</td>
<td>Primary Task</td>
<td>Ο χρήστης επεξεργασία φίλτρου ασαφούς λογικής</td>
<td>Ο χρήστης επεξεργάζεται φίλτρο ασαφούς λογικής δημιουργώντας στοιχεία και δίνοντας τιμές στα πεδία τους, ή επεξεργαζόμενος υπάρχοντα στοιχεία</td>
<td></td>
</tr>
<tr>
<td>Open Filter</td>
<td>Primary Task</td>
<td>Ο χρήστης Ανοίγμα αρχείου που αντιστοιχεί σε φίλτρο ασαφούς λογικής</td>
<td>Ο χρήστης επιλέγοντας το όνομα του φίλτρου μπορεί να το ανοίξει προκειμένου να το επεξεργαστεί ή να το εκτελέσει</td>
<td></td>
</tr>
<tr>
<td>Save Filter</td>
<td>Primary</td>
<td>Ο χρήστης Αποθήκευση αρχείου του</td>
<td>Ο χρήστης δίνει όνομα και αποθηκεύει το αρχείο</td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>αντιστοιχεί σε φίλτρο δίτιμης ή ασαφούς λογικής</td>
<td>που δημιούργησε ή επεξεργάστηκε</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run Filter</td>
<td>Ο χρήστης</td>
<td>Εκτέλεση φίλτρου δίτιμης ή ασαφούς λογικής</td>
<td>Ο χρήστης εκτελεί φίλτρο στην αποθήκη υλικού που επέλεξε. Ανακτώντας τα ids των αντικειμένων που υπαναποκοινών τα φίλτρα για την περίπτωση φίλτρων δίτιμης λογικής. Για την περίπτωση των φίλτρων ασαφούς λογικής ανακτώντας τα ids και οι αποτιμήσεις όλων των αντικειμένων.</td>
<td></td>
</tr>
</tbody>
</table>

| Edit Uterm | O χρήστης | Επεξεργασία στοιχείου Uterm | Ο χρήστης επεξεργάζεται στοιχείο Uterm, δίνοντας τιμές στα πεδία που περιλαμβάνει. |

| Edit Lterm | O χρήστης | Επεξεργασία στοιχείου Lterm | Ο χρήστης επεξεργάζεται στοιχείο Lterm, δίνοντας τιμές στα πεδία που περιλαμβάνει. |

| Edit Atom | O χρήστης | Επεξεργασία στοιχείου Atom | Ο χρήστης επεξεργάζεται στοιχείο Atom, δίνοντας τιμές στα πεδία που περιλαμβάνει. |

Πίνακας 4 : «συνοπτικός πίνακας» περιπτώσεων χρήσης
Περιπτώσεις χρήσης:

<table>
<thead>
<tr>
<th>USE CASE #</th>
<th>Manage Boolean Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal in Context</td>
<td>Ο χρήστης ξεκινάει την εφαρμογή ώστε να δημιουργήσει, να επεξεργαστεί, να αποθηκεύσει ή να εκτελέσει φίλτρα δίτιμης λογικής.</td>
</tr>
<tr>
<td>Scope</td>
<td>Όλη η εφαρμογή</td>
</tr>
<tr>
<td>Level</td>
<td>Summary</td>
</tr>
<tr>
<td>Preconditions</td>
<td>Κανένα</td>
</tr>
<tr>
<td>Success End Condition</td>
<td>Ο χρήστης διαχειρίζεται επιτυχώς φίλτρα δίτιμης λογικής.</td>
</tr>
<tr>
<td>Failed End Condition</td>
<td>Παρουσιάζεται πρόβλημα κατά την διαχείριση φίλτρου δίτιμης λογικής.</td>
</tr>
<tr>
<td>Primary, Secondary Actors</td>
<td>Χρήστης, Query Editor</td>
</tr>
<tr>
<td>Trigger</td>
<td>Ο χρήστης επιθυμεί την εκκίνηση του Query Editor.</td>
</tr>
</tbody>
</table>

DESCRIPTION

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ο χρήστης ξεκινάει την εφαρμογή</td>
</tr>
<tr>
<td>2</td>
<td>Ο χρήστης δημιουργεί νέο φίλτρο δίτιμης λογικής</td>
</tr>
<tr>
<td>3</td>
<td>Ο χρήστης επιλέγει την εκτέλεση του σεναρίου χρήσης Edit Filter</td>
</tr>
<tr>
<td>4</td>
<td>Ο χρήστης επιλέγει την εκτέλεση του σεναρίου χρήσης Open Filter</td>
</tr>
<tr>
<td>5</td>
<td>Ο χρήστης επιλέγει την εκτέλεση του σεναρίου χρήσης Save Filter</td>
</tr>
<tr>
<td>6</td>
<td>Ο χρήστης επιλέγει την εκτέλεση του σεναρίου χρήσης Run Filter</td>
</tr>
<tr>
<td>7</td>
<td>Τα βήματα 2-6 μπορεί να επαναλαμβάνονται.</td>
</tr>
</tbody>
</table>

EXTENSIONS

<table>
<thead>
<tr>
<th>Step</th>
<th>Branching Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>Όταν ο χρήστης επιλέξει δημιουργία νέου φίλτρου, τότε ο Query Editor δημιουργεί το ‘πατρικό’ στοιχείο Query</td>
</tr>
</tbody>
</table>
Πίνακας 5: περίπτωση χρήσης για την διαχείριση φίλτρου δίτιμης λογικής

USE CASE #

Manage Fuzzy Filter

Goal in Context

Ο χρήστης ξεκινάει την εφαρμογή ώστε να δημιουργήσει, να επεξεργαστεί, να αποθηκεύσει ή να εκτελέσει φίλτρα ασαφούς λογικής.

Scope

Όλη η εφαρμογή

Level

Summary

Preconditions

Κανένα

Success End Condition

Ο χρήστης διαχειρίζεται επιτυχώς φίλτρα ασαφούς λογικής.

Failed End Condition

Παρουσιάζεται πρόβλημα κατά την διαχείριση φίλτρου ασαφούς λογικής.

Primary, Secondary Actors

Χρήστης

Query Editor

Trigger

Ο Χρήστης επιθυμεί την εκκίνηση του Query Editor.

DESCRIPTION

Step	Action
1 | Ο χρήστης ξεκινάει την εφαρμογή
2 | Ο χρήστης δημιουργεί νέο φίλτρο ασαφούς λογικής
3 | Ο χρήστης επιλέγει την εκτέλεση του σενάριου χρήσης Edit Fuzzy Filter
4 | Ο χρήστης επιλέγει την εκτέλεση του σενάριου χρήσης Open Filter
5 | Ο χρήστης επιλέγει την εκτέλεση του σενάριου χρήσης Save Filter
6 | Ο χρήστης επιλέγει την εκτέλεση του σενάριου χρήσης Run Filter
7 | Τα βήματα 2-6 μπορεί να επαναλαμβάνονται.

EXTENSIONS

Step	Branching Action
Όταν ο χρήστης επιλέξει δημιουργία νέου φίλτρου ασαφούς λογικής, τότε ο Query Editor δημιουργεί το ‘πατρικό’ στοιχείο FuzzyQuery.

2α) Ο χρήστης δίνει τιμή and/or στο γνώρισμα type του στοιχείου FuzzyQuery
2α2) Ο χρήστης επιλέγει αν το προαιρετικό γνώρισμα flag θα εφαρμοστεί στο στοιχείο FuzzyQuery

Πίνακας 6: περίπτωση χρήσης για την διαχείριση φίλτρων ασαφούς λογικής

<table>
<thead>
<tr>
<th>USE CASE #</th>
<th>Edit Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal in Context</td>
<td>Ο χρήστης επεξεργάζεται φίλτρο δίτιμης λογικής δημιουργώντας στοιχεία και δίνοντας τιμές στα πεδία τους, ή επεξεργαζόμενος υπάρχοντα στοιχεία.</td>
</tr>
<tr>
<td>Scope</td>
<td>Όλη η εφαρμογή</td>
</tr>
<tr>
<td>Level</td>
<td>Primary Task</td>
</tr>
<tr>
<td>Preconditions</td>
<td>Να έχει γίνει εκκίνηση της εφαρμογής</td>
</tr>
<tr>
<td>Success End Condition</td>
<td>Ο χρήστης επεξεργάζεται με επιτυχία φίλτρο δίτιμης λογικής.</td>
</tr>
<tr>
<td>Failed End Condition</td>
<td>Ο χρήστης δεν επεξεργάζεται με επιτυχία φίλτρο δίτιμης λογικής.</td>
</tr>
<tr>
<td>Primary, Secondary Actors</td>
<td>Χρήστης, Query Editor</td>
</tr>
<tr>
<td>Trigger</td>
<td>Ο χρήστης έχει επιλέξει να επεξεργαστεί φίλτρο δίτιμης λογικής.</td>
</tr>
</tbody>
</table>

DESCRIPTION

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ο χρήστης μπορεί να δημιουργήσει ένα καινούργιο στοιχείο Uterm ή να επιλέξει ένα υπάρχον.</td>
</tr>
<tr>
<td>2</td>
<td>Ο χρήστης καλεί το σενάριο χρήσης Edit Uterm για το νέο ή επιλεγμένο στοιχείο Uterm</td>
</tr>
<tr>
<td>3</td>
<td>Ο χρήστης μπορεί να δημιουργήσει ένα καινούργιο στοιχείο LTerm ή να επιλέξει ένα υπάρχον</td>
</tr>
<tr>
<td>4</td>
<td>Ο χρήστης καλεί το σενάριο χρήσης Edit Lterm για το νέο ή επιλεγμένο στοιχείο Lterm</td>
</tr>
</tbody>
</table>
Ο χρήστης μπορεί να δημιουργήσει ένα καινούργιο στοιχείο Atom

Ο χρήστης καλεί το σκενάριο χρήσης Edit Atom για το νέο ή επιλεγμένο στοιχείο Atom

Ο χρήστης επαναλαμβάνει τα βήματα 1 εως 6 μέχρι τον χρήστη να δημιουργήσει το φίλτρο

Πίνακας 7: περίπτωση χρήσης για την επεξεργασία φίλτρων δίτιμης λογικής

<table>
<thead>
<tr>
<th>USE CASE #</th>
<th>Edit Fuzzy Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal in Context</td>
<td>Ο χρήστης επεξεργάζεται φίλτρο ασαφούς λογικής δημιουργώντας στοιχεία και δίνοντας τιμές στα πεδία τους, ή επεξεργαζόμενος υπάρχοντα στοιχεία.</td>
</tr>
<tr>
<td>Scope</td>
<td>Όλη η εφαρμογή</td>
</tr>
<tr>
<td>Level</td>
<td>Primary Task</td>
</tr>
<tr>
<td>Preconditions</td>
<td>Να έχει γίνει επανίδρυση της εφαρμογής</td>
</tr>
<tr>
<td>Success End</td>
<td>Ο χρήστης επεξεργάζεται με επιτυχία το φίλτρο ασαφούς λογικής.</td>
</tr>
<tr>
<td>Failed End</td>
<td>Ο χρήστης δεν επεξεργάζεται με επιτυχία το φίλτρο ασαφούς λογικής</td>
</tr>
<tr>
<td>Primary,</td>
<td>Χρήστης</td>
</tr>
<tr>
<td>Secondary Actors</td>
<td>Query Editor</td>
</tr>
<tr>
<td>Trigger</td>
<td>Ο χρήστης έχει επιλέξει να επεξεργαστεί φίλτρο ασαφούς λογικής.</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>Step</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>EXTENSIONS</td>
<td>Step</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>1a</td>
<td></td>
</tr>
<tr>
<td>1a1)</td>
<td></td>
</tr>
<tr>
<td>1a2)</td>
<td></td>
</tr>
</tbody>
</table>

Πίνακας 8 : use case επεξεργασίας φίλτρου ασαφούς λογικής

<table>
<thead>
<tr>
<th>USE CASE #</th>
<th>Save Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal in Context</td>
<td>Ο χρήστης θα αποθηκεύει φίλτρο που δημιουργήθηκε ή επεξεργάστηκε, δίνοντας το όνομα με το οποίο θα αποθηκεύεται το αρχείο.</td>
</tr>
<tr>
<td>Scope</td>
<td>Όλη η εφαρμογή</td>
</tr>
<tr>
<td>Level</td>
<td>Primary Task</td>
</tr>
<tr>
<td>Preconditions</td>
<td>Να έχει γίνει εκκίνηση της εφαρμογής</td>
</tr>
<tr>
<td>Success End Condition</td>
<td>Ο χρήστης αποθηκεύει με επιτυχία το φίλτρο.</td>
</tr>
<tr>
<td>Failed End Condition</td>
<td>Ο χρήστης δεν καταφέρνει να αποθηκεύσει με επιτυχία το φίλτρο.</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Primary, Secondary Actors | Χρήστης
Query Editor |
| Trigger | Ο Χρήστης έχει επιλέξει να αποθηκεύσει κάποιο φίλτρο. | |
| DESCRIPTION | Step | Action |
| 1 | Ο χρήστης επιλέγει να αποθηκεύσει το φίλτρο που δημιούργησε ή επεξεργάστηκε. |
| 2 | Το σύστημα αποθηκεύει το φίλτρο. |
| 2 | Ο χρήστης δίνει όνομα και επιλέγει αποθήκευση(save). |
| 3 | Ο χρήστης ακυρώνει την διαδικασία πατώντας ακύρωση(cancel). |
| EXTENSIONS | Step | Branching Action |
| 1a | Ο χρήστης έχει δημιουργήσει μη έγκυρο φίλτρο
1a1) Εμφανίζεται μήνυμα που ενημερώνει τον χρήστη για τα λάθη εγκυρότητας
1a2) Ο χρήστης είτε διορθώνει τα λάθη είτε ακυρώνει την διαδικασία. |
| 1b | Ο χρήστης έχει δημιουργήσει μη έγκυρο φίλτρο
Ο χρήστης έχει επιλέξει όνομα αρχείου το οποίο ήδη υπάρχει.
1b1) Εμφανίζεται ενημερωτικό μήνυμα το οποίο ερωτάει τον χρήστη να επιλέξει αρχείο.
1b2) Ο χρήστης αντικαθιστά το ήδη υπάρχον αρχείο, επιλέγει άλλο όνομα για την αποθήκευση του αρχείου ή ακυρώνει την διαδικασία. |
| 2a | Ο χρήστης μπορεί να επιλέξει την ακύρωση της διαδικασίας αποθήκευσης.
2a1) Το σύστημα δεν αποθηκεύει το φίλτρο. |

Πίνακας 9: περίπτωση χρήσης αποθήκευσης φίλτρου

<table>
<thead>
<tr>
<th>USE CASE #</th>
<th>Open Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal in Context</td>
<td>Ο χρήστης επιλέγοντας το όνομα του φίλτρου μπορεί να το ανοίξει προκειμένου να το επεξεργάσει ή να το εκτελέσει.</td>
</tr>
</tbody>
</table>
Πίνακας 10: περίπτωση χρήσης για το άνοιγμα φίλτρου

<table>
<thead>
<tr>
<th>Scope</th>
<th>Όλη η εφαρμογή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Primary Task</td>
</tr>
<tr>
<td>Preconditions</td>
<td>Να έχει γίνει εκκίνηση της εφαρμογής</td>
</tr>
<tr>
<td>Success End Condition</td>
<td>Ο χρήστης ανοίγει με επιτυχία το φίλτρο.</td>
</tr>
<tr>
<td>Failed End Condition</td>
<td>Ο χρήστης δεν ανοίγει το φίλτρο.</td>
</tr>
<tr>
<td>Primary, Secondary Actors</td>
<td>Χρήστης, Query Editor</td>
</tr>
<tr>
<td>Trigger</td>
<td>Ο Χρήστης έχει επιλέξει να ανοίξει κάποιο φίλτρο (open Filter).</td>
</tr>
</tbody>
</table>

DESCRIPTION

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Το σύστημα ζητά από τον χρήστη να δώσει το όνομα του αρχείου που αντιπροσωπεύει το φίλτρο που θέλει να ανοίξει.</td>
</tr>
<tr>
<td>2</td>
<td>Ο χρήστης επιλέγει όνομα και ανοίγει το αρχείο.</td>
</tr>
<tr>
<td>3</td>
<td>Το σύστημα ανοίγει το αρχείο</td>
</tr>
</tbody>
</table>

EXTENSIONS

<table>
<thead>
<tr>
<th>Step</th>
<th>Branching Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Στην περίπτωση που ο χρήστης επεξεργαζόταν ήδη κάποιο φίλτρο, επιλέγοντας να ανοίξει νέο έχει ως αποτέλεσμα την εμφάνιση μηνύματος που ρωτά τον χρήστη για την αποθήκευση ή μη του αρχικού φίλτρου</td>
</tr>
<tr>
<td>1a1)</td>
<td>Αν ο χρήστης επιλέξει να αποθηκεύσει το φίλτρο που επεξεργαζόταν, τότε το σύστημα το αποθηκεύει και συνεχίζει με το άνοιγμα νέου.</td>
</tr>
<tr>
<td>1a2)</td>
<td>Αν ο χρήστης επιλέξει να μην αποθηκεύσει το φίλτρο, τότε το σύστημα δεν το αποθηκεύει και συνεχίζει με το άνοιγμα νέου.</td>
</tr>
<tr>
<td>2a</td>
<td>Ο χρήστης έχει επιλέξει όνομα αρχείου το οποίο είτε δεν είναι έγκυρο αρχείο φίλτρου δίτιμης ή ασαφούς λογικής είτε είναι ‘αλλοσωμάνο’.</td>
</tr>
<tr>
<td>2a1)</td>
<td>Το σύστημα εμφανίζει μήνυμα το οποίο ενημερώνει τον χρήστη για την αποτυχία ανοίγματος του αρχείου.</td>
</tr>
<tr>
<td>USE CASE #</td>
<td>Run Filter</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Goal in Context</td>
<td>Ο χρήστης εκτελεί φίλτρο το οποίο έχει προηγουμένως ανοίξει ή δημιουργήσει.</td>
</tr>
<tr>
<td>Scope</td>
<td>Όλη η εφαρμογή</td>
</tr>
<tr>
<td>Level</td>
<td>Primary Task</td>
</tr>
<tr>
<td>Preconditions</td>
<td>Να έχει γίνει εκκίνηση της εφαρμογής</td>
</tr>
<tr>
<td>Success End Condition</td>
<td>Ο χρήστης εκτελεί με επιτυχία το φίλτρο και παίρνει τα αποτελέσματα που ικανοποιούν το φίλτρο.</td>
</tr>
<tr>
<td>Failed End Condition</td>
<td>Ο χρήστης δεν εκτελεί με επιτυχία το φίλτρο.</td>
</tr>
<tr>
<td>Primary, Secondary Actors</td>
<td>Χρήστης, Query Editor</td>
</tr>
<tr>
<td>Trigger</td>
<td>Ο χρήστης έχει επιλέξει να εκτελέσει κάποιο φίλτρο (run Filter).</td>
</tr>
</tbody>
</table>

DESCRIPTION

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ο χρήστης επιλέγει την αποθήκη υλικού στην οποία θα εφαρμοστεί το φίλτρο.</td>
</tr>
<tr>
<td>2</td>
<td>Ο χρήστης μπορεί να επιλέξει διάφορα LOM μεταδεδομένα των οποίων οι τιμές θα επιστραφούν μαζί με τα αναγνωριστικά ids (και rank καν έχουμε φίλτρο ασαφούς λογικής) των αντικειμένων.</td>
</tr>
<tr>
<td>3</td>
<td>Το σύστημα εκτελεί το φίλτρο και ανακτά τα ids των αντικειμένων που ικανοποιούν το φίλτρο.</td>
</tr>
<tr>
<td>4</td>
<td>Το σύστημα εμφανίζει τα αποτελέσματα.</td>
</tr>
<tr>
<td>5</td>
<td>Ο χρήστης επιλέγει κάποιο από τα αποτελέσματα για να δει την METS περιγραφή του.</td>
</tr>
<tr>
<td>6</td>
<td>Το σύστημα ανακτά την METS περιγραφή και την παρουσιάζει στο χρήστη.</td>
</tr>
</tbody>
</table>

EXTENSIONS

<table>
<thead>
<tr>
<th>Step</th>
<th>Branching Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Ο χρήστης επιλέγει την αποθήκη υλικού στην οποία θα εφαρμοστεί το φίλτρο.</td>
</tr>
<tr>
<td>1a1</td>
<td>Αν επιλεγεί η αποθήκη υλικού Αντικειμένων Μαθημάτων, ο χρήστης επιλέγει αν το φίλτρο εφαρμοστεί και στα Ειππαδετικά</td>
</tr>
</tbody>
</table>
Αντικείμενα που περιέχονται σε κάθε Αντικείμενο Μαθήματος
1a2) Αν επιλεγεί η αποθήκη υλικού Αντικειμένων Αποτίμησης, ο χρήστης επιλέγει αν το φίλτρο εφαρμοστεί σε όλα τα Αντικείμενα Αποτίμησης, μόνο στα assessment items ή μόνο στα assessment tests
1a3) Αν επιλεγεί η αποθήκη υλικού Εκπαιδευτικών Αντικειμένων ο χρήστης μπορεί αν θέλει να συνδεθεί με την αποθήκη υλικού Ψηφιακών Αντικειμένων.

3a) Αν το φίλτρο είναι ασαφούς λογικώς
3a1) Το σύστημα ανακτά τα ids των αντικειμένων και τις αποτιμήσεις τους (βαθμός ικανοποίησης του φίλτρου).

Πίνακας 11: περίπτωση χρήσης για την εκτέλεση φίλτρου

<table>
<thead>
<tr>
<th>USE CASE #</th>
<th>Edit Uterm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal in Context</td>
<td>Ο χρήστης επεξεργάζεται το στοιχείο Uterm δίνοντας τιμές στα γνώσματα που περιλαμβάνει.</td>
</tr>
<tr>
<td>Scope</td>
<td>Όλη η εφαρμογή</td>
</tr>
<tr>
<td>Level</td>
<td>Sub – Function</td>
</tr>
<tr>
<td>Preconditions</td>
<td>Να έχει γίνει εκκίνηση της εφαρμογής</td>
</tr>
<tr>
<td>Success End Condition</td>
<td>Ο χρήστης επεξεργάζεται με επιτυχία το στοιχείο Uterm.</td>
</tr>
<tr>
<td>Failed End Condition</td>
<td>Η επεξεργασία του στοιχείου Uterm δεν είναι επιτυχής.</td>
</tr>
<tr>
<td>Primary, Secondary Actors</td>
<td>Χρήστης, Query Editor</td>
</tr>
<tr>
<td>Trigger</td>
<td>Ο χρήστης έχει επιλέξει να επεξεργαστεί Uterm στοιχείο.</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>Step</td>
</tr>
<tr>
<td>1</td>
<td>Ο χρήστης δίνει τιμή and/or στο πεδίο type</td>
</tr>
<tr>
<td>2</td>
<td>Ο χρήστης επιλέγει αν το προαιρετικό γνώσμα flag θα εφαρμοστεί στο στοιχείο Uterm</td>
</tr>
</tbody>
</table>
Το φίλτρο το οποίο επεξεργάζεται ο χρήστης είναι ασαφούς λογικής
1a1) Ο χρήστης δίνει τιμή στο πεδίο type και στο πεδίο weight.

Πίνακας 12: περίπτωση χρήσης για την επεξεργασία στοιχείου Uterm

USE CASE
Edit Lterm

<table>
<thead>
<tr>
<th>Goal in Context</th>
<th>Ο χρήστης επεξεργάζεται το στοιχείο Lterm δίνοντας τιμές στα γνώρισμα που περιλαμβάνει.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>Όλη η εφαρμογή</td>
</tr>
<tr>
<td>Level</td>
<td>Sub – Function</td>
</tr>
<tr>
<td>Preconditions</td>
<td>Να έχει γίνει εκκίνηση της εφαρμογής</td>
</tr>
<tr>
<td>Success End Condition</td>
<td>Ο χρήστης επεξεργάζεται με επιτυχία το στοιχείο Lterm.</td>
</tr>
<tr>
<td>Failed End Condition</td>
<td>Η επεξεργασία του στοιχείου Lterm δεν είναι επιτυχής.</td>
</tr>
</tbody>
</table>
| Primary, Secondary Actors | Χρήστης
Query Editor |
| Trigger | Ο Χρήστης έχει επιλέξει να επεξεργαστεί Uterm στοιχείο. |

DESCRIPTION

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ο χρήστης δίνει τιμή and/or στο πεδίο type</td>
</tr>
<tr>
<td>2</td>
<td>Ο χρήστης επιλέγει αν το προαιρετικό γνώρισμα flag θα εφαρμοστεί στο στοιχείο Lterm</td>
</tr>
<tr>
<td>3</td>
<td>Ο χρήστης μπορεί να διαγράψει στοιχείο Lterm.</td>
</tr>
</tbody>
</table>

EXTENSIONS

<table>
<thead>
<tr>
<th>Step</th>
<th>Branching Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Το φίλτρο το οποίο επεξεργάζεται ο χρήστης είναι ασαφούς λογικής</td>
</tr>
<tr>
<td>1a1</td>
<td>Ο χρήστης δίνει τιμή στο πεδίο type και στο πεδίο weight.</td>
</tr>
</tbody>
</table>

Πίνακας 13: περίπτωση χρήσης για την επεξεργασία στοιχείου Lterm
<table>
<thead>
<tr>
<th>USE CASE #</th>
<th>Edit Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal in Context</td>
<td>Ο χρήστης επεξεργάζεται το στοιχείο Atom.</td>
</tr>
<tr>
<td>Scope</td>
<td>Όλη η εφαρμογή</td>
</tr>
<tr>
<td>Level</td>
<td>Sub – Function</td>
</tr>
<tr>
<td>Preconditions</td>
<td>Να έχει γίνει εκκίνηση της εφαρμογής</td>
</tr>
<tr>
<td>Success End Condition</td>
<td>Ο χρήστης επεξεργάζεται με επιτυχία το στοιχείο Atom</td>
</tr>
<tr>
<td>Failed End Condition</td>
<td>Η επεξεργασία του στοιχείου Atom δεν είναι επιτυχής</td>
</tr>
<tr>
<td>Primary, Secondary Actors</td>
<td>Χρήστης, Query Editor</td>
</tr>
<tr>
<td>Trigger</td>
<td>Ο Χρήστης έχει επιλέξει να επεξεργαστεί Atom στοιχείο.</td>
</tr>
</tbody>
</table>

DESCRIPTION

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ο χρήστης επιλέγει το LOM στοιχείο που θέλει να εξετάσει μέσω του φίλτρου και το αναπαριστά μέσω των στοιχείων Atom που δημιουργεί.</td>
</tr>
<tr>
<td>2</td>
<td>Ο χρήστης επιλέγει κιν το προαιρετικό γνώρισμα flag θα εφαρμοστεί στο στοιχείο Atom.</td>
</tr>
<tr>
<td>3</td>
<td>Ο χρήστης δίνει τιμή στα πεδία op και value</td>
</tr>
<tr>
<td>4</td>
<td>Ο χρήστης μπορεί να διαγράψει στοιχείο Atom που έχει δημιουργήσει.</td>
</tr>
</tbody>
</table>

EXTENSIONS

<table>
<thead>
<tr>
<th>Step</th>
<th>Branching Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>Το στοιχείο Atom είναι σύνθετο</td>
</tr>
<tr>
<td>3a1</td>
<td>Ο χρήστης δημιουργεί τα επιμέρους στοιχεία του Atom και προσδιορίζει την τιμή των πεδίων op και value για καθένα από αυτά</td>
</tr>
<tr>
<td>4a</td>
<td>Το στοιχείο Atom είναι σύνθετο</td>
</tr>
<tr>
<td>4a1</td>
<td>Ο χρήστης μπορεί να διαγράψει κάποια από τα επιμέρους στοιχεία του Atom</td>
</tr>
</tbody>
</table>

Πίνακας 14: περίπτωση χρήσης για την επεξεργασία στοιχείου Atom
Στο σημείο αυτό παραθέτουμε τα XML σχήματα τα οποία πρέπει να υποστηρίζουν τα ψίλτρα δίτιμης και ασαφούς λογικής.

Αρχικά παραθέτουμε το XML σχήμα το οποίο πρέπει κάθε ψίλτρο δίτιμης λογικής να υποστηρίζει προκειμένου να είναι έγκυρο.

Boolean Query Schema

```xml
<?xml version="1.0"?>
<!-xmlns="http://www.musicTuc.org"
targetNamespace="http://www.musicTuc.org" -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xsd:element name="Query">
  <xsd:complexType>
    <xsd:sequence>
      <xsd:element name="Uterm" type="utermDef" minOccurs="1" maxOccurs="unbounded"/>
    </xsd:sequence>
    <xsd:attribute name="type" type="LogicOperand" use="required"/>
    <xsd:attribute name="flag" type="NOT" use="optional"/>
  </xsd:complexType>
</xsd:element>

<xsd:complexType name="utermDef">
  <xsd:sequence>
    <xsd:element name="Lterm" type="LtermDef" minOccurs="1" maxOccurs="unbounded"/>
  </xsd:sequence>
  <xsd:attribute name="type" type="LogicOperand" use="required"/>
  <xsd:attribute name="flag" type="NOT" use="optional"/>
</xsd:complexType>

<xsd:complexType name="LtermDef">
  <xsd:sequence>
    <xsd:element name="Atom" type="AtomType" minOccurs="1" maxOccurs="unbounded"/>
  </xsd:sequence>
  <xsd:attribute name="type" type="LogicOperand" use="required"/>
  <xsd:attribute name="flag" type="NOT" use="optional"/>
</xsd:complexType>

<xsd:complexType name="AtomType">
  <xsd:choice>
    <xsd:element name="general_identifier" type="RelationalExpression_identifier"/>
    <xsd:element name="general_title_string" type="RelationalExpression_String"/>
    <xsd:element name="general_language" type="RelationalExpression_GL"/>
    <xsd:element name="general_description_string"/>
  </xsd:choice>
</xsd:complexType>
```

ΠΑΡΑΡΤΗΜΑ Β
<xsd:element name="educational_context_value" type="RelationalExpression_ECV"/>
<xsd:element name="educational_typicalAgeRange_string" type="RelationalExpression_String"/>
<xsd:element name="educational_difficulty_value" type="RelationalExpression_EDV"/>
<xsd:element name="educational_typicalLearningTime_duration" type="RelationalExpression_Duration"/>
<xsd:element name="educational_typicalLearningTime_description_string" type="RelationalExpression_String"/>
<xsd:element name="educational_description_string" type="RelationalExpression_String"/>
<xsd:element name="educational_language" type="RelationalExpression_GL"/>
<xsd:element name="rights_cost_value" type="RelationalExpression_CostV"/>
<xsd:element name="rights_copyrightAndOtherRestrictions_value" type="RelationalExpression_CostV"/>
<xsd:element name="rights_description_string" type="RelationalExpression_String"/>
<xsd:element name="relation_entry" type="RelationExpression_Relation"/>
<xsd:element name="annotation_entry" type="RelationalExpression_Anotation"/>
<xsd:element name="classification_entry" type="classification_type"/>
</xsd:choice>
<xsd:attribute name="flag" type="NOT" use="optional"/>
</xsd:complexType>
<xsd:complexType name="RelationalExpression_identifier">
<xsd:all>
<xsd:element name="catalog" type="RelationalExpression_StringWithoutLanguage" minOccurs="1"/>
<xsd:element name="entry" type="RelationalExpression_StringWithoutLanguage" minOccurs="1"/>
</xsd:all>
</xsd:complexType>
<xsd:complexType name="RelationalExpression_GStructure">
<xsd:simpleContent>
<xsd:extension base="GStructure">
<xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<xsd:simpleType name="GStructure">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="atomic"/>
<xsd:enumeration value="collection"/>
<xsd:enumeration value="networked"/>
<xsd:complexType name="RelationalExpression_AggregationlevelValue">
 <xsd:simpleContent>
 <xsd:extension base="AggregationlevelValue">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="AggregationlevelValue">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="1"/>
 <xsd:enumeration value="2"/>
 <xsd:enumeration value="3"/>
 <xsd:enumeration value="4"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_Version">
 <xsd:simpleContent>
 <xsd:extension base="Version">
 <xsd:attribute name="op" type="NumberRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="Version">
 <xsd:restriction base="xsd:string">
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_Status">
 <xsd:simpleContent>
 <xsd:extension base="Status">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="Status">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="draft"/>
 <xsd:enumeration value="final"/>
 <xsd:enumeration value="revised"/>
 <xsd:enumeration value="unavailable"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_Contribution">
 <xsd:all>
 <xsd:element name="role_value" type="RelationalExpression_CR" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="entity"..."}
<xsd:element name="date_dateTime"
type="RelationalExpression_DateTime" minOccurs="0" maxOccurs="1"/>
<xsd:element name="date_description_string"
type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>

<xsd:complexType name="RelationExpression_Rresource">
 <xsd:all>
 <xsd:element name="identifier"
type="RelationalExpression_identifier" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="description_string"
type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_Anotation">
 <xsd:all>
 <xsd:element name="annotation_entity"
type="RelationalExpression_StringWithoutLanguage" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="annotation_date_dateTime"
type="RelationalExpression_DateTime" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="annotation_date_description_string"
type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="annotation_description_string"
type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="RelationExpression_Relation">
 <xsd:all>
 <xsd:element name="kind_value"
type="RelationalExpression_RKV" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="relation_resource"
type="RelationExpression_Rresource" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="classification_type">
 <xsd:all>
 <xsd:element name="purpose_value"
type="RelationalExpression_CPV" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="taxonPathEntry"
type="RelationalExpression_taxonPath" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="description_string"
type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="keyword_string"
type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_taxonPath">
 <xsd:all>
 <xsd:element name="source_string"
type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="taxon_entry"
type="RelationalExpression_taxon" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>
<xsd:complexType name="RelationalExpression_taxon">
 <xsd:all>
 <xsd:element name="id" type="RelationalExpression_StringWithoutLanguage" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="entry_string" type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_Trequirement">
 <xsd:all>
 <xsd:element name="type_value" type="RelationalExpression_TV" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="name_value" type="RelationalExpression_NV" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="maximumVersion" type="RelationalExpression_Version" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="minimumVersion" type="RelationalExpression_Version" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_DateTime">
 <xsd:simpleContent>
 <xsd:extension base="xsd:dateTime">
 <xsd:attribute name="op" type="StringRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_Duration">
 <xsd:simpleContent>
 <xsd:extension base="xsd:duration">
 <xsd:attribute name="op" type="StringRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_CostV">
 <xsd:simpleContent>
 <xsd:extension base="CostV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="CostV">
 <!--
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="([0-9]{4})-([0-3]{2})-([0-9]{2})T([0-6]{2}):([0-6]{2}):([0-6]{2})"/>
 </xsd:restriction>
 -->
</xsd:simpleType>
<xsd:restriction base="xsd:string">
 <xsd:enumeration value="yes"/>
 <xsd:enumeration value="no"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_StringWithoutLanguage">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="op" type="StringRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_TS">
 <xsd:simpleContent>
 <xsd:extension base="TS">
 <xsd:attribute name="op" type="NumberRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="TS">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9]+"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_CPV">
 <xsd:simpleContent>
 <xsd:extension base="CPV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="CPV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="discipline"/>
 <xsd:enumeration value="idea"/>
 <xsd:enumeration value="prerequisite"/>
 <xsd:enumeration value="educational objective"/>
 <xsd:enumeration value="accessibility"/>
 <xsd:enumeration value="restrictions"/>
 <xsd:enumeration value="educational level"/>
 <xsd:enumeration value="skill level"/>
 <xsd:enumeration value="security level"/>
 <xsd:enumeration value="competency"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_CTES">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="op" type="StringRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>
```xml
<xsd:complexType name="RelationalExpression_MetaCRV">
  <xsd:simpleContent>
    <xsd:extension base="MetaCRV">
      <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
    </xsd:extension>
  </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_RKV">
  <xsd:simpleContent>
    <xsd:extension base="RKV">
      <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
    </xsd:extension>
  </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_EDV">
  <xsd:simpleContent>
    <xsd:extension base="EDV">
      <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
    </xsd:extension>
  </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="MetaCRV">
  <xsd:restriction base="xsd:string">
    <xsd:enumeration value="creator"/>
    <xsd:enumeration value="validator"/>
  </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="RKV">
  <xsd:restriction base="xsd:string">
    <xsd:enumeration value="ispartof"/>
    <xsd:enumeration value="haspart"/>
    <xsd:enumeration value="isversionof"/>
    <xsd:enumeration value="hasversion"/>
    <xsd:enumeration value="isformatof"/>
    <xsd:enumeration value="hasformat"/>
    <xsd:enumeration value="references"/>
    <xsd:enumeration value="isreferencedby"/>
    <xsd:enumeration value="isbasedon"/>
    <xsd:enumeration value="isbasisfor"/>
    <xsd:enumeration value="requires"/>
    <xsd:enumeration value="isrequiredby"/>
  </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="EDV">
  <xsd:restriction base="xsd:string">
    <xsd:enumeration value="very easy"/>
    <xsd:enumeration value="easy"/>
    <xsd:enumeration value="medium"/>
    <xsd:enumeration value="difficult"/>
    <xsd:enumeration value="very difficult"/>
  </xsd:restriction>
</xsd:simpleType>
```
<xsd:complexType name="RelationalExpression_ECV">
 <xsd:simpleContent>
 <xsd:extension base="ECV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="ECV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="school"/>
 <xsd:enumeration value="higher education"/>
 <xsd:enumeration value="training"/>
 <xsd:enumeration value="other"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_ENDUSERROLE">
 <xsd:simpleContent>
 <xsd:extension base="ENDUSERROLE">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="ENDUSERROLE">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="teacher"/>
 <xsd:enumeration value="author"/>
 <xsd:enumeration value="learner"/>
 <xsd:enumeration value="manager"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_ESV">
 <xsd:simpleContent>
 <xsd:extension base="ESV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="ESV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="very low"/>
 <xsd:enumeration value="low"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="high"/>
 <xsd:enumeration value="very high"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_EIV">
 <xsd:simpleContent>
 <xsd:extension base="EIV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="EIV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="very low"/>
 <xsd:enumeration value="low"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="high"/>
 <xsd:enumeration value="very high"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_ELV">
 <xsd:simpleContent>
 <xsd:extension base="ELV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="ELV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="exercise"/>
 <xsd:enumeration value="simulation"/>
 <xsd:enumeration value="questionnaire"/>
 <xsd:enumeration value="diagram"/>
 <xsd:enumeration value="figure"/>
 <xsd:enumeration value="graph"/>
 <xsd:enumeration value="index"/>
 <xsd:enumeration value="slide"/>
 <xsd:enumeration value="table"/>
 <xsd:enumeration value="narrative text"/>
 <xsd:enumeration value="exam"/>
 <xsd:enumeration value="experiment"/>
 <xsd:enumeration value="problem statement"/>
 <xsd:enumeration value="self assessment"/>
 <xsd:enumeration value="lecture"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_GL">
 <xsd:simpleContent>
 <xsd:extension base="GL">
 <xsd:attribute name="op" type="StringRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_String">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="op" type="StringRelationalOperator" use="required"/>
 <xsd:attribute name="language" type="GL" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>
</xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="GL">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="([a-zA-Z]{1,8})\-([a-zA-Z0-9]{1,8})|"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_CR">
 <xsd:simpleContent>
 <xsd:extension base="CR">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="CR">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="author"/>
 <xsd:enumeration value="publisher"/>
 <xsd:enumeration value="unknown"/>
 <xsd:enumeration value="initiator"/>
 <xsd:enumeration value="terminator"/>
 <xsd:enumeration value="validator"/>
 <xsd:enumeration value="editor"/>
 <xsd:enumeration value="graphical designer"/>
 <xsd:enumeration value="technical implementer"/>
 <xsd:enumeration value="content provider"/>
 <xsd:enumeration value="technical validator"/>
 <xsd:enumeration value="educational validator"/>
 <xsd:enumeration value="script writer"/>
 <xsd:enumeration value="instructional designer"/>
 <xsd:enumeration value="subject matter expert"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_TV">
 <xsd:simpleContent>
 <xsd:extension base="TV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="TV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="operating system"/>
 <xsd:enumeration value="browser"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_NV">
 <xsd:simpleContent>
 <xsd:extension base="NV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="NV">
</xsd:simpleType>
<xsd:complexType name="NV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="pc-dos"/>
 <xsd:enumeration value="ms-windows"/>
 <xsd:enumeration value="macos"/>
 <xsd:enumeration value="unix"/>
 <xsd:enumeration value="multi-os"/>
 <xsd:enumeration value="none"/>
 <xsd:enumeration value="any"/>
 <xsd:enumeration value="netscape"/>
 <xsd:enumeration value="communicator"/>
 <xsd:enumeration value="ms-internet explorer"/>
 <xsd:enumeration value="opera"/>
 <xsd:enumeration value="amaya"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_EIT">
 <xsd:simpleContent>
 <xsd:extension base="EIT">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="EIT">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="active"/>
 <xsd:enumeration value="expositive"/>
 <xsd:enumeration value="mixed"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="LogicOperand">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="or"/>
 <xsd:enumeration value="and"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="NOT">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="not"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="NumberRelationalOperator">
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value=">"/>
 <xsd:enumeration value="<"/>
 <xsd:enumeration value="!="/>
 <xsd:enumeration value="="/>
 <xsd:enumeration value=">="/>
 <xsd:enumeration value="<="/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="StringRelationalOperator">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="*"/>
 <xsd:enumeration value="@"/>
 <xsd:enumeration value="#"/>
 <xsd:enumeration value="|"/>
 <xsd:enumeration value="&"/>
 <xsd:enumeration value="\"/>
 <xsd:enumeration value=";"/>
 <xsd:enumeration value=":`"/>
 <xsd:enumeration value=":="/>
 <xsd:enumeration value="\:\:"/>
 <xsd:enumeration value="\:\:"/>
 <xsd:enumeration value="\\"/>
 <xsd:enumeration value="\ "/>
 <xsd:enumeration value="\:"/>
 <xsd:enumeration value="\:"/

<xsd:simpleType name="StringExpression">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="pc-dos"/>
 <xsd:enumeration value="ms-windows"/>
 <xsd:enumeration value="macos"/>
 <xsd:enumeration value="unix"/>
 <xsd:enumeration value="multi-os"/>
 <xsd:enumeration value="none"/>
 <xsd:enumeration value="any"/>
 <xsd:enumeration value="netscape"/>
 <xsd:enumeration value="communicator"/>
 <xsd:enumeration value="ms-internet explorer"/>
 <xsd:enumeration value="opera"/>
 <xsd:enumeration value="amaya"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression">
 <xsd:simpleContent>
 <xsd:extension base="EIT">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="EIT">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="active"/>
 <xsd:enumeration value="expositive"/>
 <xsd:enumeration value="mixed"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="LogicOperand">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="or"/>
 <xsd:enumeration value="and"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="NOT">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="not"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="NumberRelationalOperator">
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value=">"/>
 <xsd:enumeration value="<"/>
 <xsd:enumeration value="!="/>
 <xsd:enumeration value="="/>
 <xsd:enumeration value=">="/>
 <xsd:enumeration value="<=""/>
Πίνακας 15: XML Schema των φίλτρων δίτιμης λογικής

Ακολουθεί το XML σχήμα το οποίο πρέπει κάθε φίλτρο ασαφούς λογικής να ικανοποιεί προκειμένου να είναι έγκυρο

Fuzzy Query Schema

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="unqualified" elementFormDefault="qualified">

<xsd:element name="FuzzyQuery">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FuzzyUterm" type="FuzzyutermDef" minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="LogicOperand" use="required"/>
 <xsd:attribute name="flag" type="NOT" use="optional"/>
 </xsd:complexType>
</xsd:element>

<xsd:complexType name="FuzzyutermDef">
 <xsd:sequence>
 <xsd:element name="FuzzyLterm" type="FuzzyLtermDef" minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="LogicOperand" use="required"/>
 <xsd:attribute name="flag" type="NOT" use="optional"/>
 <xsd:attribute name="weight" type="xsd:float" use="required"/>
</xsd:complexType>
</xsd:complexType>
</xsd:schema>
<xsd:sequence>
 <xsd:element name="FuzzyAtom" type="FuzzyAtomType" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="type" type="LogicOperand" use="required"/>
<xsd:attribute name="flag" type="NOT" use="optional"/>
<xsd:attribute name="weight" type="xsd:float" use="required"/>
</xsd:complexType>
<xsd:complexType name="FuzzyAtomType">
 <xsd:choice>
 <xsd:element name="general_identifier" type="RelationalExpression_identifier"/>
 <xsd:element name="general_title_string" type="RelationalExpression_String"/>
 <xsd:element name="general_language" type="RelationalExpression_GL"/>
 <xsd:element name="general_description_string" type="RelationalExpression_String"/>
 <xsd:element name="general_keyword_string" type="RelationalExpression_String"/>
 <xsd:element name="general_coverage_string" type="RelationalExpression_String"/>
 <xsd:element name="general_structure" type="RelationalExpression_GStructure"/>
 <xsd:element name="general_aggregationLevel_value" type="RelationalExpression_AggregationlevelValue"/>
 <xsd:element name="lifeCycle_version_string" type="RelationalExpression_String"/>
 <xsd:element name="lifeCycle_status_value" type="RelationalExpression_Status"/>
 <xsd:element name="lifeCycle_contribute" type="RelationalExpression_Contribution"/>
 <xsd:element name="metaMetadata_identifier" type="RelationalExpression_identifier"/>
 <xsd:element name="metaMetadata_contribute" type="RelationalExpression_Contribution"/>
 <xsd:element name="metaMetadata_schema" type="RelationalExpression_StringWithoutLanguage"/>
 <xsd:element name="metaMetadata_language" type="RelationalExpression_GL"/>
 <xsd:element name="technical_format" type="RelationalExpression_StringWithoutLanguage"/>
 <xsd:element name="technical_size" type="RelationalExpression_TS"/>
 <xsd:element name="technical_location" type="RelationalExpression_StringWithoutLanguage"/>
 <xsd:element name="technical_requirement_orComposite" type="RelationalExpression_Trequirement"/>
 <xsd:element name="technical_InstallationRemarks" type="RelationalExpression_String"/>
 <xsd:element name="technical_OtherPlatformRequirements" type="RelationalExpression_String"/>
 <xsd:element name="technical_duration_duration" type="RelationalExpression_Duration"/>
 </xsd:choice>
</xsd:complexType>
<xsd:element name="technical_duration_description_string" type="RelationalExpression_String"/>

<xsd:element name="educational_interactivityType_value" type="RelationalExpression_EIT"/>

<xsd:element name="educational_learningResourceType_value" type="RelationalExpression_ELV"/>

<xsd:element name="educational_interactivityLevel_value" type="RelationalExpression_EIV"/>

<xsd:element name="educational_semanticDensity_value" type="RelationalExpression_ESV"/>

<xsd:element name="educational_intendedEndUserRole_value" type="RelationalExpression_ENDUSERROLE"/>

<xsd:element name="educational_context_value" type="RelationalExpression_ECV"/>

<xsd:element name="educational_typicalAgeRange_string" type="RelationalExpression_String"/>

<xsd:element name="educational_difficulty_value" type="RelationalExpression_EDV"/>

<xsd:element name="educational_typicalLearningTime_duration" type="RelationalExpression_Duration"/>

<xsd:element name="educational_typicalLearningTime_description_string" type="RelationalExpression_String"/>

<xsd:element name="educational_description_string" type="RelationalExpression_String"/>

<xsd:element name="educational_language" type="RelationalExpression_GL"/>

<xsd:element name="rights_cost_value" type="RelationalExpression_CostV"/>

<xsd:element name="rights_copyrightAndOtherRestrictions_value" type="RelationalExpression_CostV"/>

<xsd:element name="rights_description_string" type="RelationalExpression_String"/>

<xsd:element name="relation_entry" type="RelationExpression_Relation"/>

<xsd:element name="annotation_entry" type="RelationalExpression_Anotation"/>

<xsd:element name="classification_entry" type="classification_type"/>
</xsd:choice>

<xsd:attribute name="flag" type="NOT" use="optional"/>

<xsd:attribute name="weight" type="xsd:float" use="required"/>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_identifier">
<xsd:all>
 <xsd:element name="catalog" type="RelationalExpression_StringWithoutLanguage" minOccurs="1"/>
</xsd:all>
</xsd:complexType>
<xsd:element name="entry"
type="RelationalExpression_StringWithoutLanguage" minOccurs="1"/>
</xsd:all>
</xsd:complexType>
<xsd:complexType name="RelationalExpression_GStructure">
 <xsd:simpleContent>
 <xsd:extension base="GStructure">
 <xsd:attribute name="op"
type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:simpleType name="GStructure">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="atomic"/>
 <xsd:enumeration value="collection"/>
 <xsd:enumeration value="networked"/>
 <xsd:enumeration value="hierarchical"/>
 <xsd:enumeration value="linear"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="RelationalExpression_AggregationlevelValue">
 <xsd:simpleContent>
 <xsd:extension base="AggregationlevelValue">
 <xsd:attribute name="op"
type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:simpleType name="AggregationlevelValue">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="1"/>
 <xsd:enumeration value="2"/>
 <xsd:enumeration value="3"/>
 <xsd:enumeration value="4"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="RelationalExpression_Version">
 <xsd:simpleContent>
 <xsd:extension base="Version">
 <xsd:attribute name="op" type="NumberRelationalOperator"
use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:simpleType name="Version">
 <xsd:restriction base="xsd:string">
 </xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="RelationalExpression_Status">
 <xsd:extension base="Status">
 <xsd:attribute name="op" type="EnumRelationalOperator"/>
<xsd:complexType name="Status">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="draft"/>
 <xsd:enumeration value="final"/>
 <xsd:enumeration value="revised"/>
 <xsd:enumeration value="unavailable"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_Contribution">
 <xsd:all>
 <xsd:element name="role_value" type="RelationalExpression_CR" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="entity" type="RelationalExpression_StringWithoutLanguage" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="date_dateTime" type="RelationalExpression_DateTime" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="date_description_string" type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="RelationExpression_Rresource">
 <xsd:all>
 <xsd:element name="identifier" type="RelationalExpression_identifier" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="description_string" type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_Anotation">
 <xsd:all>
 <xsd:element name="annotation_entity" type="RelationalExpression_StringWithoutLanguage" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="annotation_date_dateTime" type="RelationalExpression_DateTime" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="annotation_description_string" type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="annotation_date_description_string" type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<!--
<xsd:complexType name="RelationalExpression_Anotation">
 <xsd:choice>
 <xsd:sequence>
 <xsd:element name="annotation_entity" type="RelationalExpression_StringWithoutLanguage" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="annotation_date_dateTime" type="RelationalExpression_DateTime" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:choice>
</xsd:complexType>
-->
<xsd:complexType name="RelationalExpression_String">
 <xsd:all>
 <xsd:element name="keyword_string" type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_taxonPath">
 <xsd:all>
 <xsd:element name="source_string" type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="taxon_entry" type="RelationalExpression_taxon" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_taxon">
 <xsd:all>
 <xsd:element name="id" type="RelationalExpression_StringWithoutLanguage" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="entry_string" type="RelationalExpression_String" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_Trequirement">
 <xsd:all>
 <xsd:element name="type_value" type="RelationalExpression_TV" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="name_value" type="RelationalExpression_NV" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="maximumVersion" type="RelationalExpression_Version" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="minimumVersion" type="RelationalExpression_Version" minOccurs="0" maxOccurs="1"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_DateTime">
 <xsd:simpleContent>
 <xsd:extension base="xsd:dateTime">
 <xsd:attribute name="op" type="StringRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_Duration">
 <xsd:simpleContent>
 <xsd:extension base="xsd:duration">
 <xsd:attribute name="op" type="StringRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_CostV">
 <xsd:simpleContent>
 <xsd:extension base="CostV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="RelationalExpression_StringWithoutLanguage">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="op" type="StringRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_TS">
 <xsd:simpleContent>
 <xsd:extension base="TS">
 <xsd:attribute name="op" type="NumberRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_CPV">
 <xsd:simpleContent>
 <xsd:extension base="CPV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_CTES">
 <xsd:simpleContent>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="RelationalExpression_MetaCRV">
 <xsd:simpleContent>
 <xsd:extension base="MetaCRV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_RKV">
 <xsd:simpleContent>
 <xsd:extension base="RKV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_EDV">
 <xsd:simpleContent>
 <xsd:extension base="EDV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="MetaCRV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="creator"/>
 <xsd:enumeration value="validator"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="RKV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ispartof"/>
 <xsd:enumeration value="haspart"/>
 <xsd:enumeration value="isversionof"/>
 <xsd:enumeration value="hasversion"/>
 <xsd:enumeration value="isformatof"/>
 <xsd:enumeration value="hasformat"/>
 <xsd:enumeration value="references"/>
 <xsd:enumeration value="isreferencedby"/>
 <xsd:enumeration value="isbasedon"/>
 <xsd:enumeration value="isbasisfor"/>
 <xsd:enumeration value="requires"/>
 <xsd:enumeration value="isrequiredby"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="EDV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ispartof"/>
 <xsd:enumeration value="haspart"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="EIV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="very low"/>
 <xsd:enumeration value="low"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="high"/>
 <xsd:enumeration value="very high"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_EIV">
 <xsd:simpleContent>
 <xsd:extension base="EIV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="ELV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="exercise"/>
 <xsd:enumeration value="simulation"/>
 <xsd:enumeration value="questionnaire"/>
 <xsd:enumeration value="diagram"/>
 <xsd:enumeration value="figure"/>
 <xsd:enumeration value="graph"/>
 <xsd:enumeration value="index"/>
 <xsd:enumeration value="slide"/>
 <xsd:enumeration value="table"/>
 <xsd:enumeration value="narrative text"/>
 <xsd:enumeration value="exam"/>
 <xsd:enumeration value="experiment"/>
 <xsd:enumeration value="problem statement"/>
 <xsd:enumeration value="self assessment"/>
 <xsd:enumeration value="lecture"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_ELV">
 <xsd:simpleContent>
 <xsd:extension base="ELV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="GL">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="very low"/>
 <xsd:enumeration value="low"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="high"/>
 <xsd:enumeration value="very high"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_GL">
 <xsd:simpleContent>
 <xsd:extension base="GL">
 <xsd:attribute name="op" type="StringRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="RelationalExpression_String">
 <xsd:simpleContent>
<xsd:complexType name="RelationalExpression_CR">
 <xsd:simpleContent>
 <xsd:extension base="CR">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="CR">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="author"/>
 <xsd:enumeration value="publisher"/>
 <xsd:enumeration value="unknown"/>
 <xsd:enumeration value="initiator"/>
 <xsd:enumeration value="terminator"/>
 <xsd:enumeration value="validator"/>
 <xsd:enumeration value="editor"/>
 <xsd:enumeration value="graphical designer"/>
 <xsd:enumeration value="technical implementer"/>
 <xsd:enumeration value="content provider"/>
 <xsd:enumeration value="technical validator"/>
 <xsd:enumeration value="educational validator"/>
 <xsd:enumeration value="script writer"/>
 <xsd:enumeration value="instructional designer"/>
 <xsd:enumeration value="subject matter expert"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_TV">
 <xsd:simpleContent>
 <xsd:extension base="TV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="TV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="operating system"/>
 <xsd:enumeration value="browser"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_NV">
 <xsd:simpleContent>
 <xsd:extension base="NV">
 <xsd:attribute name="op" type="EnumRelationalOperator" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="NV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="small"/>
 <xsd:enumeration value="unknown"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:simpleContent>
 <xsd:extension base="NV">
 <xsd:attribute name="op" type="EnumRelationalOperator"
 use="required"/>
 </xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="NV">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="pc-dos"/>
 <xsd:enumeration value="ms-windows"/>
 <xsd:enumeration value="macos"/>
 <xsd:enumeration value="unix"/>
 <xsd:enumeration value="multi-os"/>
 <xsd:enumeration value="none"/>
 <xsd:enumeration value="any"/>
 <xsd:enumeration value="netscape"/>
 <xsd:enumeration value="communicator"/>
 <xsd:enumeration value="ms-internet explorer"/>
 <xsd:enumeration value="opera"/>
 <xsd:enumeration value="amaya"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="RelationalExpression_EIT">
 <xsd:simpleContent>
 <xsd:extension base="EIT">
 <xsd:attribute name="op" type="EnumRelationalOperator"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="EIT">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="active"/>
 <xsd:enumeration value="expositive"/>
 <xsd:enumeration value="mixed"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="LogicOperand">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="or"/>
 <xsd:enumeration value="and"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="NOT">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="not"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="NumberRelationalOperator">
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value=">"/>
 <xsd:enumeration value="<"/>
 <xsd:enumeration value="!="/>
 <xsd:enumeration value="="/>
 <xsd:enumeration value=">="/>
 <xsd:enumeration value="<="/>
 <xsd:enumeration value=">&&"/>
 <xsd:enumeration value="<&&"/>
 <xsd:enumeration value=">||"/>
 <xsd:enumeration value="<||"/>
 <xsd:enumeration value=">|"/>
 <xsd:enumeration value="<|"/>
 <xsd:enumeration value=">|&"/>
 <xsd:enumeration value="<|&"/>
 <xsd:enumeration value=">||&"/>
 <xsd:enumeration value="<||&"/>
 <xsd:enumeration value=">|&&"/>
 <xsd:enumeration value="<|&&"/>
 <xsd:enumeration value=">|&|"/>
 <xsd:enumeration value="<|&|"/>
 <xsd:enumeration value=">|&&"/>
 <xsd:enumeration value="<|&&"/>
 <xsd:enumeration value=">|&|&"/>
 <xsd:enumeration value="<|&|&"/>
 <xsd:enumeration value=">|&&&"/>
 <xsd:enumeration value="<|&&&"/>
 <xsd:enumeration value=">|&|&|"/>
 <xsd:enumeration value="<|&|&|"/>
 </xsd:restriction>
</xsd:simpleType>
Πίνακας 16: XML Schema φίλτρων ασαφούς λογικής